

SiNANO-NEREID Workshop:

Towards a new NanoElectronics Roadmap for Europe

Leuven, September 11th, 2017

WP3/Task 3.2

Connectivity

RF and mmW Design

Outline

- Connectivity, what connectivity?
- High data rates
 - > Key parameters
 - Design trends
 - Design examples
- Low data rates
 - > Key parameters
 - Design trends
 - Design examples

Conclusion

Outline

Connectivity, what connectivity?

- High data rates
 - > Key parameters
 - Design trends
 - Design examples
- Low data rates
 - > Key parameters
 - Design trends
 - Design examples
- Conclusion

Connectivity, what connectivity?

An object can be

- A thing (Internet of Things IoT)
- A computer (HPC, data centers, etc.)
- A chip (chip-to-chip communication)
- Anything that produces and/or uses data

Wireline digital transmissions

- To increase the data rate, the industry is currently moving from NRZ to multilevel modulation formats (PAM-4, as a first step, for 100-400G) instead of further increasing frequency
- To ease signal processing when it comes to PAM-4, analog CDR are replaced by data converters
- The approach is similar to the one adopted by wireless transmissions a couple of years ago, starting from FSK (2G GSM) to 64QAM (4G LTE).

Data converter based data receiver for M-ary (multilevel) modulation

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

M-ary modulation scheme issue

Feasibility has already been demonstrated

100 Gbps ILO-based CDR (130nm SiGe, 1.4W)

- ILO can replace PLL for CDR at multi-100Gbps data rates
 - Resynchronization is mandatory within the demux when used as a receiver
- However power consumption is still quite high
- Low cost CMOS implementations are required to address mass market

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Digital data connectivity

Connectivity trends

Two use cases in parallel

High data rate devices

- Wireline or wireless communications
- Power consumption is an issue, thought not a critical one
- Performance is the key : the higher the frequency, the better
- Battery operated devices depict a dramatically reduced operating lifetime

Low data rate devices

- Sensors and actuators IoT
- Mostly wireless, due to device mobility (static devices may use wireline)
- RF frequency is preferred due to small range of mmW and THz
- Power efficiency is the key : the longer the battery life, the better

Low cost is an issue in both use cases

The mass market imposes its law

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Outline

- Connectivity, what connectivity?
- High data rates
 - > Key parameters
 - Design trends
 - Design examples
- Low data rates
 - > Key parameters
 - Design trends
 - Design examples
- Conclusion

Key parameters

Data conversion

ENOB and clock frequency are criticals

• PAM-4 requires 6-7 bits of resolution with a 60-100 GHz clock in order to reach the 100-400 Gbps barrier

High frequency clock

> The domain of interest is mmW to THz – and CMOS is mandatory...

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Sub-THz frequency generation

Multi-loop synthesizer with injection locked oscillators in series

SiNANO-NEREID Workshop-Leuven Sept.11, 2017

Sub-THz frequency generation : the approach

- Fundamental generation:
 - High output power 🤐
 - High efficiency 🤐
 - Low active component $f_{\max} \Theta = -$ Low efficiency Θ

- Harmonic recombination:
 - High oscillation frequency 🤐
 - Low output power 🤐

- New alternative, Distributed-Oscillators:
 - $-f_{osc}$ can exceed active component f_{max}
 - High efficiency close to $f_{\rm max}$
 - Low sensitivity to active elements dispersion
 - Very compact for high frequency

Distributed oscillator principle

• Based on ideal distributed oscillator theory, oscillation frequency is given by:

$$f_{osc} = \frac{1}{2nl\sqrt{LC}}$$

[H. Wu, et al, JSSC 2001]

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Wide-range Body Bias Enabled Phase Noise Tuning

$$L(\Delta\omega) = 10 \log \left[\frac{kT}{V_{out}^2} \cdot \frac{1}{R_p (C\omega_0)^2} \cdot \left(\frac{\omega_0}{\Delta\omega}\right)^2 \right]$$

$$V_{out} \approx V_T + \frac{2I_D}{G_m} \approx V_T + 2nI_D (Z_L || Z_C) \cdot e^{-\alpha nl}$$
Phase noise optimisation with « VT tuning knob »:
• Unique ~250mV V_T tuning range in FD-SOI vs. ~ 10's mV in any bulk CMOS
• Unique $\sum_{r \ge 0} \sum_{r \ge 0}$

Forward body bias [V]

SiNANO-NEREID Workshop-Leuven Sept.11, 2017

Extracted f_t/f_{max} for the proposed 28nm transistor

SiNANO-NEREID Workshop-Leuven Sept.11, 2017

Physical implementation

Simplified layout view @134GHz

Chip microphotograph

@134GHz

@202GHz

Area with Pads : 0.087 mm² Active area : 0.034 mm² Area with Pads : 0.065 mm² Active area : 0.014 mm²

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

202 GHz oscillator measurement results

Measured output spectrum and phase-noise

 $V_{body} = 1.5 V$, $V_{drain} = 1 V$, $V_{gate} = 0.5 V$

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Phase noise optimization with body bias

Measured phase noise @ 1MHz offset, for different locations (#8).

V_{body}: Sweep $V_{drain} = 1 V$ $V_{gate} = 0.5 V$

For constant $V_{bodv.}$ less than 6% variation Optimization through body-bias tuning Power consumption is only 20mW

SiNANO-NEREID Workshop-Leuven Sept.11, 2017

Outline

- Connectivity, what connectivity?
- High data rates
 - > Key parameters
 - Design trends
 - Design examples
- Low data rates
 - > Key parameters
 - Design trends
 - Design examples
- Conclusion

Wireless data consumption

97% of this will be used by smartphone

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Why do we have to take care of the 3%?

IoT : a world of connected devices

Trillions of battery-powered wireless devices

Low cost (CMOS) Low consumption (RF frequency)

SiNANO-NEREID Workshop-Leuven Sept.11, 2017

Inductorless ICs are mandatory to stay tiny

The oscillator case study

LC tank resonator

- Low phase noise
- High power consumption
- Large die area

Ring oscillators

- Low power consumption
- Small area
- Poor phase noise
- PVT sensitive

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

A potential solution : the FD-SOI DLL-enhanced PLL

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Delay Locked Loop design

through current starving oscillating element in the PLL

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Phase Locked Loop design

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Post Layout Simulation results

	Block	Consumption (μW)
DLL	Delay line	29
	PFD + CP	1
	Current starver	18
Mutualized	CP current reference	10
PLL	VCO	11
	PFD+CP	1
	Divider	25
TOTAL		96

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Performance summary – 28nm FD-SOI CMOS

VCO Topology	Ring oscillator	
Synthesizer architecture	DLL-enhanced PLL	
Center frequency f _o	2.5 GHz	
Tuning range	100 MHz	
Phase Noise @ Δf=100 kHz	-70 dBc/Hz	
Locking time	5 µs	
Power	100 μW	
FoM	-175 dB	

 $FoM = PN(\Delta f) - 20.\log(f_0/\Delta f) + 10.\log(Power/1mW)$

State-of-the-art PLLs exhibit FoM in the range [-169 dB ; -180 dB]

SiNANO-NEREID Workshop- Leuven Sept.11, 2017

Outline

- Connectivity, what connectivity?
- High data rates
 - > Key parameters
 - Design trends
 - Design examples
- Low data rates
 - > Key parameters
 - Design trends
 - Design examples

Conclusion

Conclusion

High data rate connectivity requires high performances

- High performance technologies are welcome (FinFET)
 - However FD-SOI too has demonstrated its capabilities
- High performances topologies
 - Smart circuit design is required revisited and novel architectures
- Power consumption is not (yet) critical
 - Reliability issues might appear while ageing

Low data rate connectivity requires ultra-low power capability

- Battery operated devices with long lifetime are mandatory
 - Design optimization as well as optimal architectures
- Performances are lowered as a tradeoff w.r.t. ultra-low power
 - Standards have to take this point into account

Conclusion

Connectivity is a mass market

- Designing low cost devices is of tremendous importance
 - Low cost technologies are preferred, but a tradeoff with time-to-market is also to be considered
- Robustness is required
 - Optimization (for either power or performance) should be constrained to ensure robust devices
- Reliability and test are major issues
 - Novel approaches are expected to counteract technological bottlenecks, but novel approaches yield to a lack of maturity

