

SiNANO-NEREID Workshop:

Towards a new NanoElectronics Roadmap for Europe

Energy for Autonomous Sensors

S.Monfray

Principal Engineer Advanced Devices Technology STMicroelectronics stephane.monfray@st.com

HORIZON 2020

Leuven, September 11th, 2017

WP4/Task.4.2

Future IoT challenge?

NEIRED WP4/Sub Task.4.2 : Energy for autonomous systems roadmap

- Among the different EH technologies, 4 were selected for the initial roadmap:
 - Experts were selected coming from Industries and Universities:
- 4 technology experts :

- Gustavo Ardila Grenoble Alpes University / Grenoble INP, France
 Mechanical energy harvesting (piezoelectric materials)
- Stephane Monfray STMicroelectronics, Crolles, France
 Thermal energy harvesting, Electrostatic energy conversion
- Anne Kaminski-Cachopo Grenoble INP, France Solar Energy Harvesting
- Aldo Romani University of Bologna, Italy Circuits for energy management

1st Domain workshop (Bertinoro, Italy, October 19th, 2016) 2nd Domain workshop (Barcelona, Spain, December 15th, 2017)

2017Prepare the final roadmap including the inputs from the new experts and actualize the mid-term roadmap technologies

Business opportunities for Energy autonomous IoT

Home automation & Malls: ٠

Detect any change in the environment: door & window opening, control of light & heat in rooms, movements, occupancy, customers traffic in malls...

Monitoring: ٠

Heat distribution to detect pipes leaks, industrial monitoring to detect anomalous variations (temperature, vibrations, movement...)

Transport: ٠

Containers & freight wagon Identification, anomalous temperature on trailer breaks...

Wellness:

Activity monitoring for dependent people at home, intelligent ergonomic seats...

PLOSIVE

Example of System for autonomous Sensor Node

Environment Harvesting: different energy sources & performances

Photovoltaic: Indoor performances for IoT

	Efficiency under sun light at 1000 W/m ²					
Technology	Best performance for lab cell ⁽¹⁾	Commercial module or cells ⁽²⁾	under fluo light à 1000 lux ⁽³⁾	Substrat	Cost	
c-Si	25.0%	12-16% (module)	≈20-60 µW/cm²	c-Si	High	
c-Si back side contacted		20% (module)		c-Si	High	
a-Si	10.1%	5-7% (module)	≈ 35 µW/cm²	Glass	Low	
Double junction a-Si/µc-Si	11.9%	8-10% (module)		Glass	Low	
CdTe (Cadmium Telluride)	16.7%	10-12% (module)		Glass	Low	
CIGS (copper indium gallium selenide)	19.6%	8-13% (module)	≈30-35 µW/cm²	Glass, metal, plastic	Low	
Triple junction GalnP/GaAs/Ge	32.0%	25-30% (cell)		c-Ge	very High	
Organic	8.3%	1-2% (module)	≈10-20 µW/cm² (module)	Plastic	Low	

- A market dominated by the Si (mature technology):
- For outdoor applications, crystalline Si solar cells
- For *indoor* applications, amorphous Si photovoltaic cells

NEIRED targets: (Indoor 300lux)

5y	10 y
>20µW/cm ²	>25µW/cm ²

Define standard procedures for indoor photovoltaic cells characterization
 Design and optimize structures for outdoor or/and indoor light (sensitivity to light sources, flexibility if necessary, Thin films, nanostructured, multi-junction solar cells, cost...)

Mechanical energy harvesting: vibrations with Piezoelectric conversion

Consider new sustainable materials & piezocomposites to avoid lead based piezoelectrics

Efficient material : AIN thin film

Mech. vibrations	Power
0,07G @155Hz	28µW
0,2G @155Hz	150µW

T. Ricart et al. Macro energy harvester based on Aluminium Nitride thin films, Proc. Ultrasonics 2011

Efficient piezoelectric structure

- Improved cantilever shape
- High coupling bulk materials

Issue=bandwith

ts:	MEMS devices (f<300Hz, G<0.5)	5y	10 y
	Volume power density (mW/cm ³)	1	1.5

Mechanical energy harvesting: vibrations with Electrostatic conversion

Electret-based harvesters

One electrode of the capacitor is charged (electret, tribolelectricity...) and the relative movement between the two electrodes causes a variation of electric capacity -> charges movement

MEMS electret-based harvester

 Electrostatic converter with a combdrive structure

Mech. vibrations	Power
2G@50Hz	1µW
2G@430Hz	6,6µW

Y. Lu et al., Proc. MEMS, 2016

- Enlarge frequency bandwidth (>50Hz)
- Reliability of materials
- Develop flexible/low cost approaches

1mW/cm³

(100Hz)

0.5mW/cm³

(100Hz)

Mechanical energy harvesting: Rotations with Electromagnetic conversion

Water flow

Flow	Power
6L/min	0,2mW
20L/min	10mW

Air flow

M. Perez et al., A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications, Smart Materials and Structures, 2016.

10

RF Energy Harvesting

• Friis equation: transmitted power α 1/R²

$$P_R = \frac{P_T G_T G_R \lambda^2}{(4\pi R)^2}$$

- Very low harvested power with ambiant Harvesting
- 10-100nW/cm²
- More applications for remote power use cases

• Seebeck effect: generation of a voltage along a conductor when it is subjected to a temperature difference: Heat Sink is mandatory

Low voltage provided: elevator circuit needed

Industrial, Home automation, Body...

•Material performance given by figure of merit ZT

Improving ZT:

Phonon scattering:

- Reduce phonon scattering by nano particles in semiconductor matrix.
- Phonon scattering at Si/SiGe layers interfaces

Nature.com, 2016

REVIEW ARTICLE OP

On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective Jiong Yang¹, Lili X², Wujie Qiu^{3,3}, Lihua Wu¹, Xun Shi², Lidong Cher², Jihui Yang⁴, Wenqing Zhang^{1,2}, Ctirad Uher⁵ and David J Singh⁶

P_{max} α ΔT² Pmax normalized in mW/K²/cm² State-of-the-art ZT~1

h=40 μ m Micropelt MPG D751 P=14mW Δ T=30K S=0.114cm² P=123mW/cm² P=0.13 mW/K²/cm²

h=40µm

μh=40μm

Projections for ZT=2, 3, 4 (same fixed Heat flux) based on MPG D751 data

NEIRED targets:

Projections allows Power output performances above 0,15mW/K²/cm²

hconv=10 (ambient air convection), $\Delta T^{\sim}0,1K$ (h=10µm) hconv=10 (ambient air convection), $\Delta T^{\sim}0,3K$ (h=40µm) -> P= 13µW/cm² hconv=100 (>mm scale Heat Sink), $\Delta T^{\sim}0,6K$ (h=10µm) hconv=100 (>mm scale Heat Sink), $\Delta T^{\sim}2,3K$ (h=40µm) -> P= 800µW/cm² hconv=1000 (>cm scale Heat Sink), $\Delta T^{\sim}5,4K$ (h=10µm) hconv=1000 (>cm scale Heat Sink), $\Delta T^{\sim}18,6K$ (h=40µm) -> P= 52mW/cm²

➢Nanostructures for improving ZT

> Consider new sustainable materials to avoid Bi₂Te₃.

> Develop new thermal energy approaches (non Seebeck): Phase change...

Thot=400K

Tamb=300K

Phononic Engineering: Evaluation of performances of Si based TEG

life.auamented

Application of ENERGY HARVESTING for IoT

System optimization to work with very few level of energy

17

System optimization

Optimization of the whole energy harvesting chain!

>Define trade-offs (intrinsic power consumption, efficiency, performance): energy-aware power design of circuits.

Size reduction of inductors, planar alternatives (piezoMEMS), inductor-less converters

Asynchronous autonomous Sensor: the paradigm to work with very low energy

General Recommendations

- The development of applications is the key. IoT and energy harvesting are applicationdriven today, so projects should mainly focus on the development of a complete application (from harvesting to the use case).
- The improvement of the EH performance/efficiency is as important as the development of "green" materials. Replacing toxic/rare materials used nowadays (lead based piezoelectrics, Bi₂Te₃ for thermoelectrics).
- The use of nanotechnologies is foreseen to increase the performance of all the concepts in general.
- **Flexible and low cost** approaches for wearable applications should be developed as well.
- SYSTEM OPTIMIZATION is the MOST IMPORTANT WAY to work with ENERGY HARVESTING
- Power management circuit consumption is key

