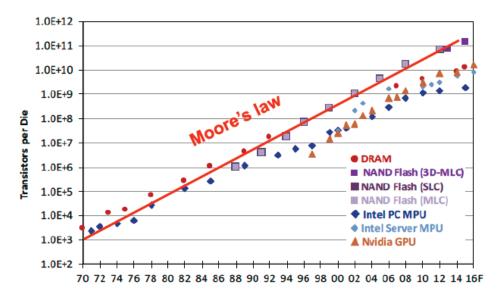


NanoElectronics Roadmap for Europe: Identification and Dissemination

Presentation in the Speaker's Corner at EFECS Brussels, December 6, 2018

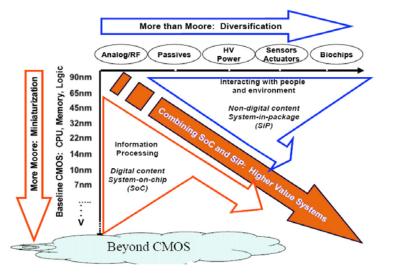
Francis Balestra, Grenoble INP/CNRS



Change of paradigm

From More Moore ...

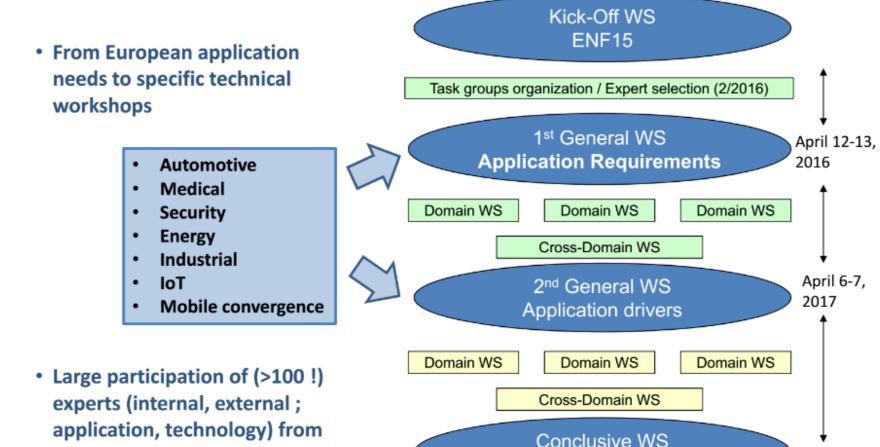
... to ...


More than Moore and heterogeneous integration

- From device density ...
- From device cost driven ...
- From single figure of merit ...
- From Technology push ...

... to ...

... to ...


- ... functionality increase
- ... system cost driven
- ... multiple parameters
- ... Application pull
- ... full supply chain
- ... sustainability

NEREID Roadmap Flow

NEREID Roadmap Process

application, technology) from leading European academic and industrial institutions in Workshops

Roadmap finalization

2018

4

NEREID Structure & coordination with other regions

Management

Dissemination Š Communication

Beyond CMOS

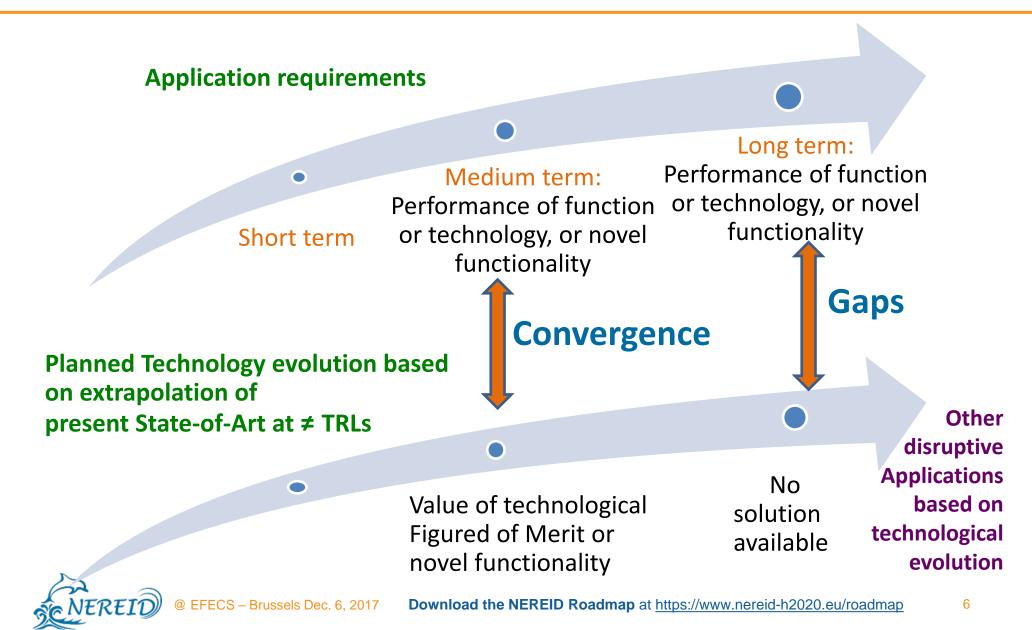
Advanced Logic and Connectivity

Functional diversification

System Design & Heterogeneous Integration

Equipment & Manufacturing Science roadmap initiatives **Coordination** with

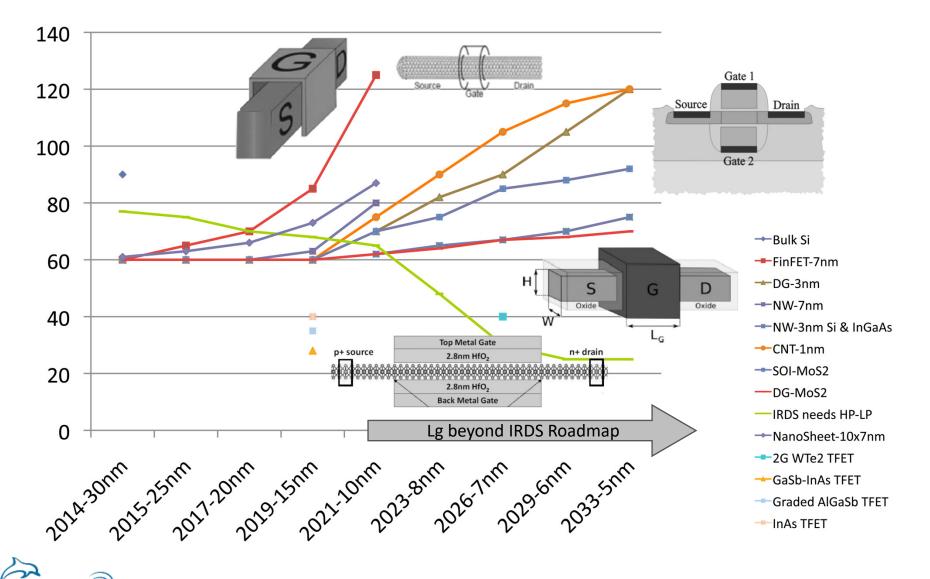
Advisory Committee



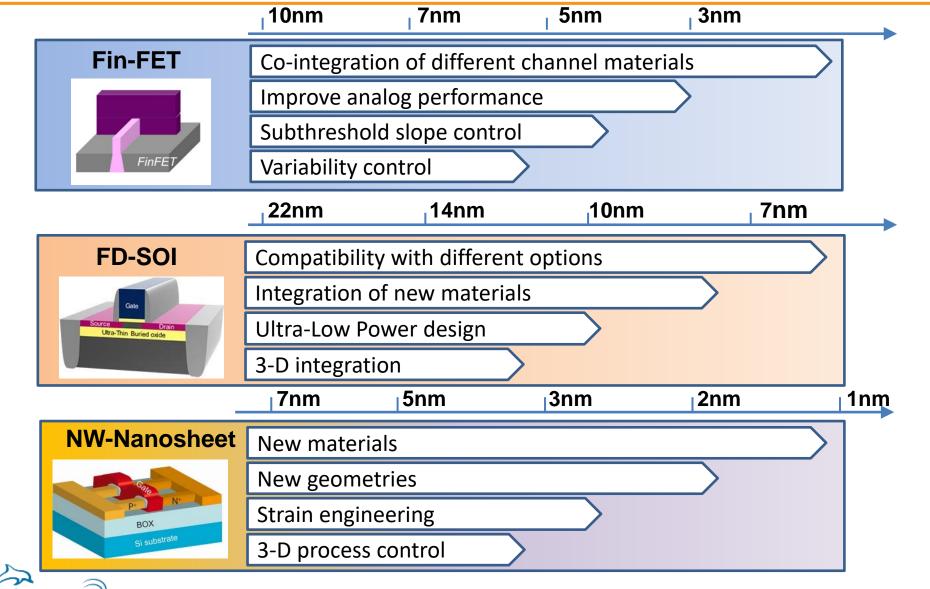
10-15 high level members: Europe, USA, Asia

5

The NEREID Approach



Advanced Logic and Connectivity Nanoscale FETs

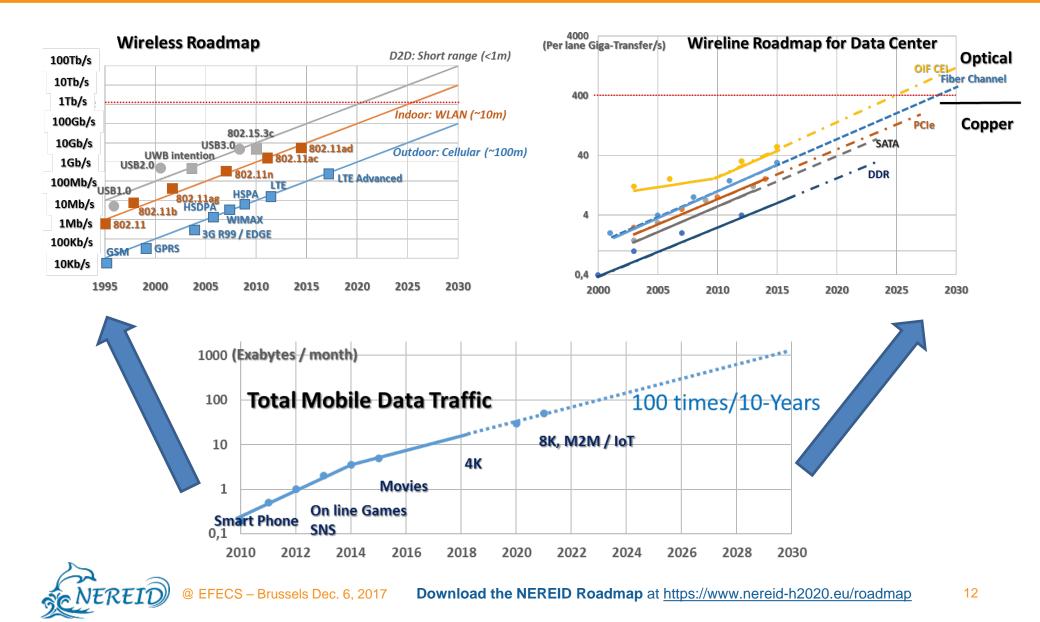

7

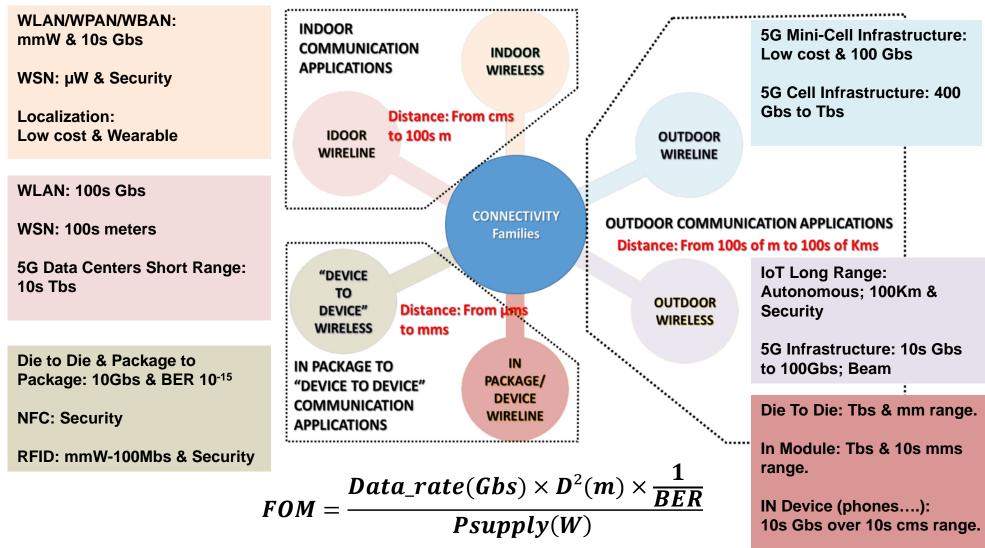
Sub. Swing vs Year / Lg (mV/dec) (Sim.)



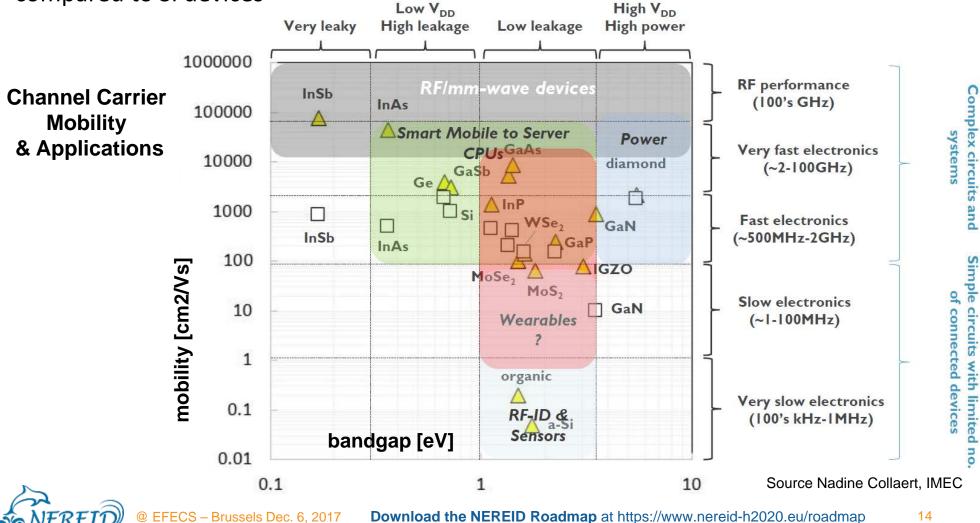
8

Nanoscale FETs: Research highways

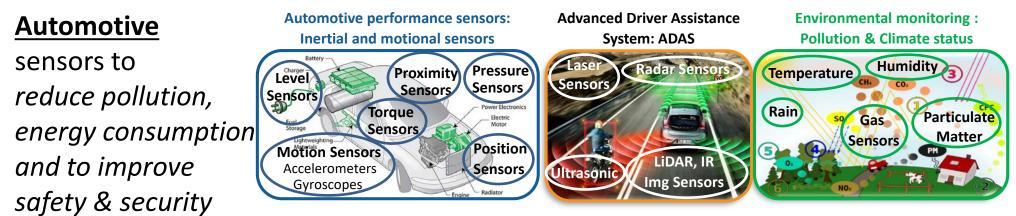

Nanoscale FETs: Research highways


Advanced Logic and Connectivity Connectivity

Connectivity Roadmap


Next 5 years Connectivity Challenges

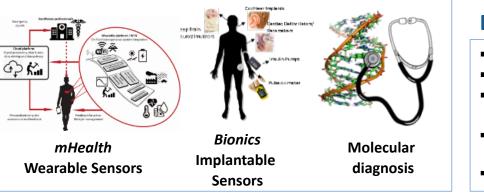
Highlights of Connectivity


Organization of a WS at EuMW 17 around RF & mmW connectivity and III-V devices compared to Si devices

Functional Diversification Smart Sensors

Smart Sensors - Roadmap

- Improve accuracy
- Share manufacture infrastructure costs with other applications


Medical and healthcare

sensors are developing very fast.

Applications

- Drug Development
- Patient Monitoring
- Clinical Operation
- Clinical Imaging
- Fitness & Wellness

Devices

End Users

- Patients
- Biotech companies
- Research labs
- of pharma Healthcare providers
- & players
- Government authority
- Cost and convenience (for the patient, the hospital, etc.)
- Long and tedious development stage

Highlights of Smart Sensors

Healthcare and automotive are of high relevance for European industry and research. In this sectors quality is even more important than the price.

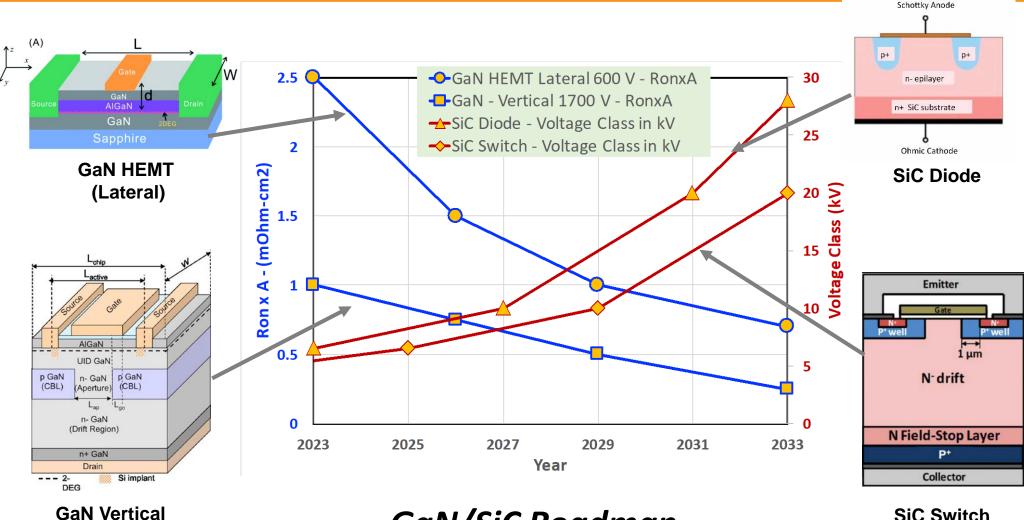
- Well-penetrated healthcare systems
- Dominates the **autonomous vehicle market** with major technology manufactures and early commercialization of **ADAS systems**.

Some of the smart sensor identified gaps by 2030 concern: manufacturability and cost (hybrid integration), low power consumption (energy efficiency, zero-power or self-powered sensors), robustness (stability) of design and in production reliability.

Lack of metrology & standards: clinical validation, FDA approvals...

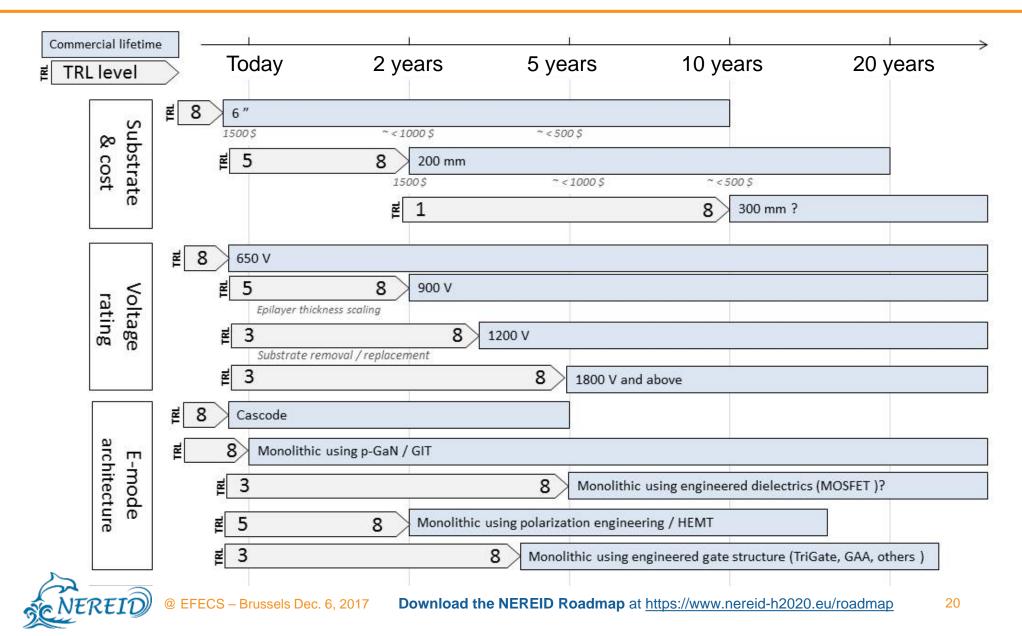
- * Lack of regulations: reduce emissions, dependence in oil...
- Auto-calibration or self-calibrated sensors
- Sensor packaging, compatibility and CMOS integration
- Connected objects and Internet of things (IoT)
- Sensor Fusion/ Wireless Sensor Network (WSN)

Sensors relevant in other segments:


- consumer electronics: motion MEMS
- industrial: image sensors
- infrastructure: air quality sensors
- defense: LiDAR
- etc.

Functional Diversification Smart Energy

Smart Energy - Roadmap


GaN/SiC Roadmap

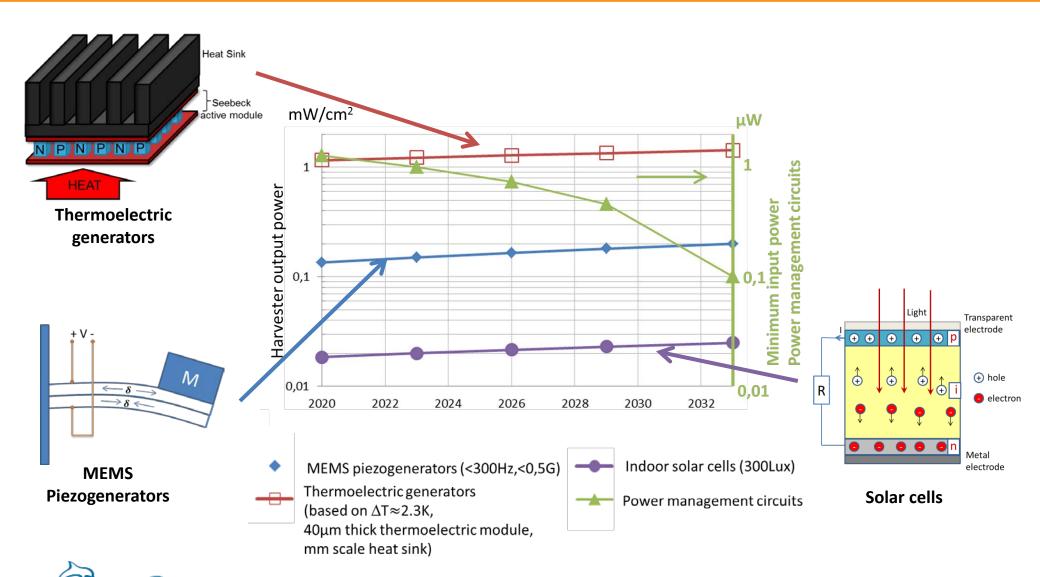
SiC Switch

Smart Energy - Roadmap

➤GaN-on-Si Roadmap

Smart Energy devices open issues

- Fast switching is the key for size and weight reduction with WBG power semiconductors leading to several issues: EMC, low parasitic inductances of the packaging and interconnection technologies, power losses related to passive components, need for system integration solutions, optimized switching cell, integrated drivers, ...
- As a consequence, the extreme miniaturization of power electronic systems leads to higher power density which requires new improved cooling techniques, but also leads to higher operation (and junction) temperature.
- Issues related to high temperature power electronics:


advanced materials and processes for **packaging** and interconnection (chip level and system level), polymer moulding & encapsulation, substrates, temperature range for passive components, **robustness** and reliability.

Functional Diversification Energy for autonomous systems

Energy for autonomous systems - Roadmap

Highlights of Energy for autonomous systems

- IoT and energy harvesting are application-driven today, so projects should mainly focus on the development of a complete application (from harvesting to the use case)
- The improvement of energy harvesters performance and efficiency is as important as the development of "green" materials.
- The use of nanotechnologies is foreseen to increase the performance of all the concepts in general.
- Increasing the bandwidth at a low frequency target (below 100Hz) will help to fit applications for vibration based mechanical energy harvesters.
- Power management circuits key issues: inductors size reduction, develop planar alternatives to inductors, reduce leakages.

System Design and Heterogeneous Integration

Application drives the choices for the system

Functionalities

•Specs,

Interfaces/Communicati on, Computing/Storing, Sensing, Learning, Autonomy, Speed

Physicalities

•Energy/power, response time, form factor, environment, temperature, EM effects, technology nodes, robustness

Criticalities & Opportunities

• Manufacturability, Cost, System Level Reliability, Lifecycle, OoS, Compatibility/Standard, Security(hacking), Privacy, Safety, Designer Education

Design Paradigms

•HW/SW, reconfigurability, energy aware/driven, design for IP, Open source/cores, Automated

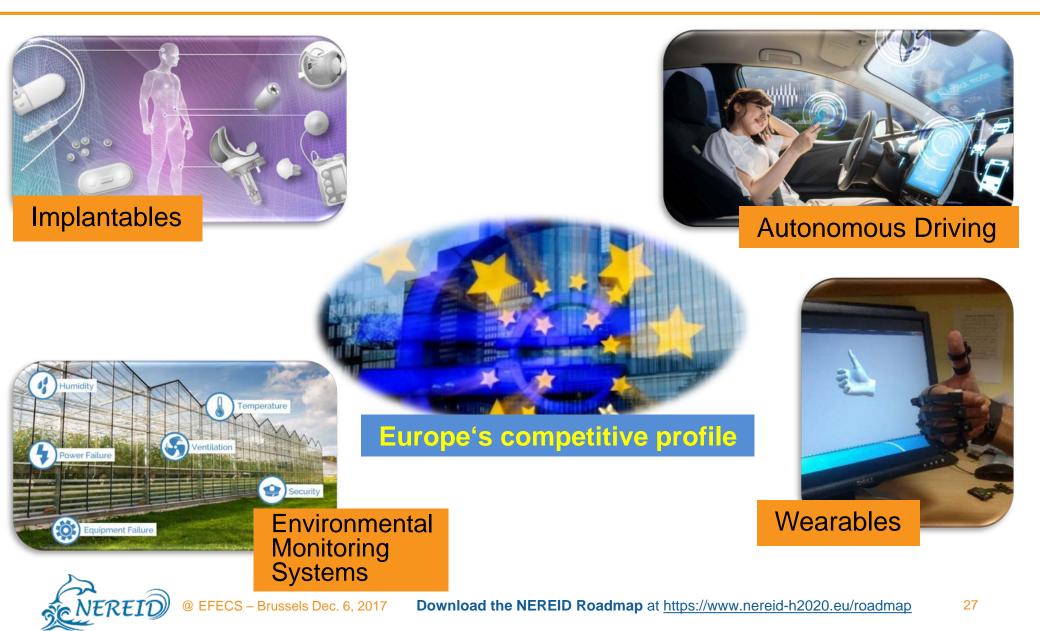
Design Activities

•Verification, testing & validation, multiphysics, multiparameter, optimisation, prototyping, constraints aware design, design for maintenance, network synthesis

Implementation Qualities

Energy Autonomy Connectivity

Sensor Integration


Miniaturisation

Reliability & Lifecycle Functional Safety, Privacy & Security

Functionalities

Applications to be considered

Example: Implantable Systems (I)

E	Everything is application driven. The application drives the choices.										
The Key Functionalities to considered Capture importan and the anticipate TRL focus at 5+ and 10+	The Implementation Qualities required for implementing the Functionalities. Measured in 5+ and 10+ importance	Criticalities & Needs indicating the challenges and the needed technologies in 5+ and 10+ horizon What needs to be achieved in terms of anticipated technologies/solutions?									

Example: Implantable Systems (II)

		erything is application driv						
		IMPLAN	TABLE	BIO-SY	STEMS			
FUNCTION (*** = Very lı (TRL to be r	mportant)	IMPLEMENTATION Q (*** = Very Important Qua		CRITICALITIES & NEEDS (*** = Very Important to solve/implement it)				
			FoM 5+	FoM 10+	Link to other WPs	List of Criticalities and/or needs	FoM 5+	FoM 10+
		PHYSICAL & TECHNOLOGICAL REQUIREMENTS Technology Nodes/Impact on Technology	**	***	2	Technical (investing in technical manufacturability)	**	***
		Low power electronics	***	***	4	Design and production of ultra-low power electronics	<µW (circuit consumption)	< nW (circu consumptio
		Energy storage (e.g., solid state)	***	***	4	Duration Recycling	> 10 years ***	> 30 years ***
		Energy Harvesting (e.g., new materials)	***	***	4	Production of efficient energy harvesters	μW	mW
		Energy/Power efficient algorithms	***	***	4	Implementation of efficient energy-aware hw/sw co-design algorithms	**	***
		DESIGN METHODS & TOOLS						
		Automated Design Space Exploration & System Synthesis	*	*	4	Implementation of automated tools for exploring optimal solutions for lowering energy consumption	**	***
						Focus of System Synthesis for optimising energy consumption	**	**
	***	Verification	*** *** 4			Verification of system functionalities in case of not stable or critic energy levels	***	***
Energy	5+: TRL 5	Profile of Energy Sources	*** *** 4		4	Design tools for implementing profiling and monitoring of energy sources	***	***
Autonomy	10+: TRL 8	Constraint Propagation	***	***	4	Tools for propagation of constraints deriving from energy sources, considering their impact on system performances/functionalities	***	***
		DESIGN PARADIGMS Machine Learning Capabilities/Artificial Intelligence		**	4	Design for implementing Machine Learning algorithms for optimising power consumption	*	**

SCINEKEID

Highlights of System Design & Heterogeneous Integration

Europe has an excellent opportunity to drive the increase in System Knowledge bringing Europe to a leading position for System Level Applications

- The future is to move from Embedded Computing to Embedded Intelligence towards Smart Adaptive Systems
- From Connected Devices to Distributed Embedded Intelligence (System of Systems)
- The working environment is part of the System and needs to be taken into account
- Energy Autonomy
 - > Push limits of energy harvesters to their fundamental optimum
 - > Integrate miniaturised storage with high-energy density and high-power capability
 - Power management; holistic approach integrating hybrid energy harvesting and aiming at reducing consumption for each layer and as a whole (consumption when is necessary only)
- Definition of Standards for Interoperability. Openness of standard cannot prevent monetisation.
- Re-Usability / Reconfigurability; also "zero maintenance"

Equipment, Materials and Manufacturing Science

More Moore: Materials, Processes and Equipment

												-	
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Con	ventio	nal techn	ology no	de semic	onducto	or device	& syster	ns (WP3)				
	Equipme	ent & Materi	als for 7 nm	node°								_	
		nFET implem situ doped R			FDx (Strain	ed CMOS)					TF	RL 2-4	
		17 horizontal									— — – –		
	10	nm FDX (Gat	te Last, SAC)								RL 4-6	
			Equipmen for 5nm n	it & materia ode°	als							RL 6-8	
			<n5< td=""><td>Vertical GA</td><td>A</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td></n5<>	Vertical GA	A							_	
							pment & m node °	naterials for					
									Equipmen	t & materia	Is for sub 3	8nm node °	

Beyond CMOS & new compute paradigme options down-select and implement (WP2)

Spin transistors, Steep sub-Vt slop	e (FeFET, TFET, NEMS) alternative materials:
TMD's, others	
Neuromorphic and quantum com	outing
Equipment, Materials, Metrology & inspection for Beyon	
CMOS & new compute paradigm options	

Memory systems incl. new storage architecture for smart systems, IoT and new compute paradigme

STT- MRAM/ ReRAM/ PCM / other

Equipment, Materials, Metrology & inspection for Beyon CMOS & new compute paradigm options

More-than-Moore: Materials, Processes and Equipment

2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
terogeneous System-on-Chip (SoC) Integration (WP5)												
		Equipmen Heterogen Integratior										
			Innovative (on chip &			eterogene	ous Integra	tion		•	TRL 2-	4
	Specific equipments and materials enabling innovative MTM devices and heterogeneous integration										TRL 4-0	6
	E& M for further miniaturization and higher functional density for MTM								[•	TRL 6-8	8
Upgrade N technologi mm wafers	ies to 300 s and											
heterogen integratior												

Process technology for the applications (WP4)

Fechnology platform for integrated application defined sensors, including packaging								
E&M for integrated application defined sensors, including packaging								
Process technology platforms for biomedical devices for minimally invasive healthcare								
E&M for biomedical devices for minimally invasive healthcare								
Enhanced process technology platforms for power								
electronics								
E&M for the enablement of the enhanced process te	echnolgy platforms for							
power electronics								
Upgrade SiC technolies to larger wafer sizes (15	50 mm, 200 mm)							
Upgrade GaN technologies to larger wafer sizes	es (150 mm GaN on SiC,)							

Manufacturing

2010	2010	2020	2021	2022	2022	2024	2025	2020	2027	2020	2020	2020
2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Manufa	Manufacturing											
Replacem	Replacement materials (e.g. not based on Bi2Te3)											
Upgrade a	Upgrade automation, APC and											
integration	integration of new sensors and hybrid colutions TRL 2-4											
solutions												. 2-4
Con	trol of varia	ability in m	anufacturi	ng							- TRL	. 4-6
	Advanced	diagnostic	and decis	ion suppor	t systems						-	
	(supervisio	on, schedu	ling, agility	, augmenti	ng reactive	2					_' TRL	. 6-8
	with predi	ctive, big d	lata analyti	CS								
Knowledg	e manager	nent (inter	fab flows,	fast diagn	osis)							
FICS migra	tion towar	d distribut	ed archited	ture BYOD	/Apps							
Improvem	nent of fab	productivi	ty (cycle ti	me, percen	tage NPW	wafers, eq	luipment a	vailability,	equipment	utilisation	, yield	
enhancem	ent, etc.) L	inked to IF.	RDS Factory	Integratio	n							
	Supply chain integration											
Mar	Manufacturing data security considerations											
	Manufacturing technology exploration for functional integration of novel materials (e.g. Graphene, TMD's, FerroElectric, e.a.) Implemented in existing pilot											

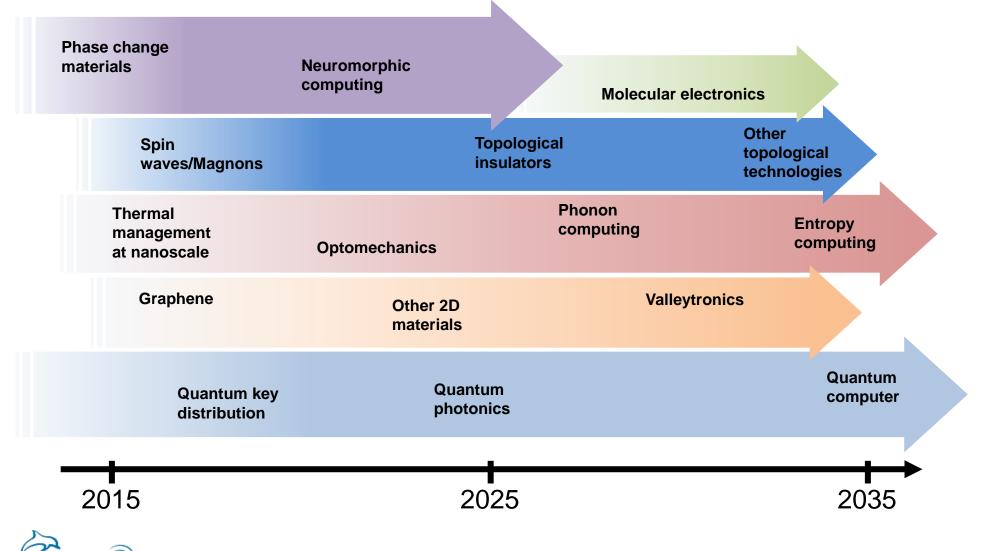
Highlights of Equipment, Materials & Manufacturing Science


- Execution of 2 Workshops and interaction with some leading equipment suppliers
 - More Moore and More-than-Moore considered from equipment, processes and materials perspective
 - Leading European equipment manufacturers need to follow- global roadmap for mainstream technologies (More Moore)
 - In other domains Europe is leading with specific process expectations, e.g. automotive, sensor, power, etc. (More-than-Moore)
 - Manufacturing science is incorporated as well
- Close interaction with all other NEREID technical areas (WP2-WP5)
- ECSEL MASRIA used as basis for WP6 roadmap
 - Integration of outcome of all other NEREID work packages
 - Extension of time horizon until 2030

Beyond CMOS

Opportunities and Highlights in Beyond CMOS topics

- New state/hybrid state variables: spin, magnon, phonon, photon, electronphonon, photon-superconducting qubit, photon-magnon, etc...
- States can be digital, multilevel, analog, entangled...
- Low power: Spintronics, magnons, even entropy-based computing
- High speed: 2D systems, valleytronics (~100 fs relaxation times)
- Applications in information processing: best suitable variables can be combined for efficient operation (e.g. optomechanics for light to mm-wave conversion, neuromorphics for various pattern recognition tasks)
- Current TRLs: 1-3



Bottlenecks in Beyond CMOS Research

- Manufacturability (non-standard processes, bottom-up approach in many cases, tolerances, lab-scale)
- Operation conditions (temperature, magnetic field...)
- Architectures (interconnects, variability, amplification, various functions for logic operations, memory, programming)
- Figure of Merits difficult to define before standardization (different operation principles for each area/technology)
- ❖ Cultural and communication barriers between academic and ROs researchers, and stake holders: community is very dispersed and individual researchers can be "averse to application/TRL-speak". Projects in Beyond CMOS mainly ERCfunded (individuals not consortium → Know-how transfer to industry probably less likely)

Beyond CMOS Roadmap

Recommendations for Beyond CMOS research

- Funding schemes needed in Europe that create an ecosystem of small and medium size consortium-based projects (FET open-, FET Proactive-like projects).
- Foster synergies among these consortia-based projects and establish links to the individuals holding ERC grants (common thematic workshops and working groups sharing one of more of materials, techniques, physics, potential applications), CSA's and project clusters with critical mass and win-win outcomes built in.
- Identify common technological and design challenges to most emerging Beyond CMOS approaches as first step to overcome them and advance to higher TRLs.
- Identify industrial actors open to Beyond CMOS themes and foster joint projects to submit to LEIT ICT or FP9 version of it.
- Link up with potential flagships in ICT (e.g., QuTec, Robotics, Big Data/AI, Health, Neuromorphic, Nanoengineering, etc.) and contribute to the next wave of innovations in those topics.
- Explore ways to break the cultural and communication barriers with industry, e.g., study the USA Semiconductor Research Council approach to academia and Beyond CMOS topics.

Next Steps

Mid-term Roadmap available on: <u>https://www.nereid-h2020.eu/roadmap</u>

=> Don't hesitate to contact us with any question or comment

- Organization of next (and last) Domain/Cross-Domain/General Workshops in all Tasks/WPs
- Strengthening of the interaction with IRDS
- ✤ M36 (Nov. 2018): Final Roadmap

A fruitful European and International collaboration has been established and will be strengthened in the second part of NEREID targeting a very important long term Roadmap for the EU

Thank you !

Contact : francis.balestra@grenoble-inp.fr

ssels Dec. 6, 2017 Download the NEREID Roadmap at https://www.nereid-h2020.eu/roadmap 42