

NanoElectronics Roadmap for Europe: Identification and Dissemination

3rd General Workshop Sardinia, June 14-15, 2018

WP6

Task 6.1 Equipment and Materials

- Processing tools and high quality materials have been the key enabling factors in the evolution of Nanoelectronics. One of the major successes of ITRS has been the capability to insure the timely availability of equipment and materials for the next technology node, by insuring to manufacturers the long term visibility needed to allocate the R&D investments to guarantee the continuation of the Moore's Law.
- The objective of this task is to extend this benefit to the increased complexity and variety of technologies developed not only for 'More than Moore' but also for nanoscale FET and Beyond CMOS, covered in this European roadmap
- A close cooperation will be established between device and process developers, on one side, and equipment and materials supplier on the other side.

Task 6.2 Manufacturing Science

- The scaling down of the MOS transistor has driven the progress in the ICs performance and the cost per function of the devices has dropped accordingly.
- For complex devices, the decrease of the cost per functions is achieved by the development of derivative options on top of the core processes and the integration of heterogeneous processes. This leads to increasingly complex line management driven by many process generations, multiple products with short life cycle and high variability in terms of demand.
- The roadmap aims to activate a converging network of experience and competency involving the academic community for the development of new tools and methods for fab productivity needed to increase efficiency in the fab by managing cycle time, advancing equipment and process control and yield enhancement by providing a reference schedule.

Before we start: WP6 working model

Before we start: Technology Readiness Level

Technology Readiness Levels

European Commission

- TRL 0: Idea. Unproven concept, no testing has been performed.
- TRL 1: Basic research. Principles postulated and observed but no experimental proof available.
- TRL 2: Technology formulation. Concept and application have been formulated.
- TRL 3: Applied research. First laboratory tests completed; proof of concept.
- TRL 4: Small scale prototype built in a laboratory environment ("ugly" prototype).
- TRL 5: Large scale prototype tested in intended environment.
- TRL 6: Prototype system tested in intended environment close to expected performance.
- TRL 7: Demonstration system operating in operational environment at pre-commercial scale.
- TRL 8: First of a kind commercial system. Manufacturing issues solved.
- TRL 9: Full commercial application, technology available for consumers.

Source: European Commission

3rd General Workshop- Sardinia June 14-15, 2018

Before we start: Labratory Equipment

Source: NREL

3rd General Workshop- Sardinia June 14-15, 2018

Before we start: HVM Equipment

3rd General Workshop- Sardinia June 14-15, 2018

- TRL 2-4

Before we start: High Volume Manufacturing

Task 6.1 Equipment and Materials

3rd General Workshop- Sardinia June 14-15, 2018

2023	2026	2029	2033		
Moore					
onventional technology node semiconduct	or device & systems (WP3)				
Equipment & Materials for 7 nm node°					
• FinFET implementation >N7 / 12 nm FDx	 FinFET implementation >N7 / 12 nm FDx (Strained CMOS) in situ doped RSD (Gen2), dual STI 				
• <n7 gate-all-around="" horizontal="" nw<="" td=""></n7>					
Equipment & materials for 5nm node°					
• <n5 gaa<="" td="" vertical=""><td></td><td></td><td></td></n5>					
Equipment & materials for 3nm node °					
Equipment & materials for sub 3nm node	•				
echnologies					
Si based technology					
Si(Ge) to Ge					
III/V					
FDSOI					
Nanowires					
3D Sequential					
Advanced Surface Passivation / defect pas	sivation (new materials, scaled technologi	es)			
terconnects					
Advanced low-k to airgap					
Cu based (including liner / barrier)					

Beyond Cu metallization

- TRL 2

- TRL 2-4 (Technology Readiness Level; applied research - validation in laboratory environment)

- TRL 4-6 (validation in laboratory ennvironment - demonstration in relevant environment)

- TRL 6-8 (demonstration in relevant environment - prototyping in an operational environment qualified)

3rd General Workshop- Sardinia June 14-15, 2018

NERE1

2023	2026	2029	2033	
e Moore				
Material / thin film growth				
Conventional semiconductor technologies				
2D materials				
Spin based materials / stacking				
Patterning				
Area Selective Deposition				
Area Selective Etching				
EUVL				
DSA based lithography				
Metrology				
Materials and contamination analysis	Materials and contamination analysis			
CD and overlay				
3D metrology (physical and chemical parameters)				
Film thickness				
Metrology requirements for system integration				

- TRL 2-4 (Technology Readiness Level; applied research - validation in laboratory environment)

- TRL 4-6 (validation in laboratory ennvironment - demonstration in relevant environment)

- TRL 6-8 (demonstration in relevant environment - prototyping in an operational environment qualified)

Equipment, Materials and Manufacturing Science

	2023	2026	2029	2033
re	<u>Moore</u>			
Bey	yond CMOS & new compute paradigm op	tions down-select and implement (WP2		
	Spin transistors, Steep sub-Vt slope (FeFE	T, TFET, NEMS) alternative materials: TM	D's, others	
	Neuromorphic and quantum computing			
Equ	uipment, Materials, Metrology & inspect	on for Beyond CMOS & new compute p	aradigm options	
	Tunneling FET (conventional materials)			
	Tunneling FET (2D materials)			
	from charge based to spin based			
Me	emory systems incl. new storage archited	ture for smart systems, IoT and new con	npute paradigm	
	STT- MRAM/ ReRAM/ PCM / other			
	- TRL 2-4 (Technology Readiness Lev	rel; applied research - validation in labo	pratory environment)	
I	- TRI 4-6 (validation in laboratory e	nvironment - demonstration in relevan	t environment)	

- TRL 6-8 (demonstration in relevant environment - prototyping in an operational environment qualified)

Equipment, Materials and Manufacturing Science

Beyond CMOS, new compute paradigm & memory systems

2023	2026	2029	2033	
re-than-Moore	than-Moore			
Process technology for the applications (WI	24)			
Technology platform for integrated applic	ation defined sensors, including packaging	g		
CMOS integration, compatibility and read	out circuit			
Multi-parameter sensing				
Manufacturability /sensing functionality a	ind micro-pumps			
Autonomous sensor systems				
Role of new materials and nanostructures	in sensing (vs. Mature CMOS sensors)			
System-in-package (SiP) sensors				
Energy harvesting				
Equipment & Materials for integrated app	lication defined sensors, including packag	ing		
Assembling testing, metrology and calibra	Assembling testing, metrology and calibration			
Materials and contamination analysis				
Equipment & Materials for biomedical dev	vices for minimally invasive healthcare			
Maturity level				
Packaging				
Safety / Security				
Miniaturization / form factor				
Biocompatibility				
Enhanced process technology platforms f	or power electronics			

- TRL 2-4 (Technology Readiness Level; applied research - validation in laboratory environment)

- TRL 4-6 (validation in laboratory ennvironment - demonstration in relevant environment)

- TRL 6-8 (demonstration in relevant environment - prototyping in an operational environment qualified)

Equipment, Materials and Manufacturing Science

	2023	2026	2029	2033		
More-	ore-than-Moore					
Pro	cess technology for the applications (WF	24)				
	Equipment & Materials for the enablemer	t of the enhanced process technology pla	tforms for power electronics			
	Upgrade SiC technologies to larger wafer	sizes (150 mm, 200 mm)				
	Upgrade GaN technologies to larger wafe	r sizes (150 mm GaN on SiC,)				
	Co-integration of GaN with Si CMOS					
	Other material for More-than-Moore app	lications (e.g. Ga2O3, AIN, diamond)				
Het	Heterogeneous System-on-Chip (SoC) Integration (WP5)					
	Equipment enabling Heterogeneous Integration					
	Innovative materials enabling Heterogeneous Integration (on chip & package level)					
	Innovative substrates enabling Heterogeneous Integration (system on flex)					
	Specific equipment and materials enabling innovative MTM devices and heterogeneous integration (e.g. 3D handling, flip chip accuracy, etc.)					
	Equipment & Materials for further miniaturization and higher functional density for MTM					
	Upgrade MTM technologies to 300 mm wafers and heterogeneous SiP integration					
	Metrology requirements for system integration (3D metrology)					
	Equipment for Thin and large area electronics					
	Equipment for transfer printing, 3D additive mnufacturing					

- TRL 2-4 (Technology Readiness Level; applied research - validation in laboratory environment)

- TRL 4-6 (validation in laboratory ennvironment - demonstration in relevant environment)

- TRL 6-8 (demonstration in relevant environment - prototyping in an operational environment qualified)

Equipment, Materials and Manufacturing Science

----- 2023 ---- 2026 ---- 2029 ---- 2033

3rd General Workshop- Sardinia June 14-15, 2018

Task 6.2 Manufacturing Science

3rd General Workshop- Sardinia June 14-15, 2018

Equipment, Materials and Manufacturing Science

NEREI

2023	2026	2029	2033	
ufacturing Science				
vironment, Safety, Health (ESH)				
Replacement materials (e.g. not based on Bi2Te3)				
Implementation of capabilities for utility r	eduction, such as support idle mode	, improved scheduling and specific communicat	tion between host and equipment	
for energy savings				
oductivity				
Improvement of fab productivity (cycle til	ne, percentage NPW wafers, equipn	nent availability, equipment utilization, yield enl	nancement, etc.)	
Supply chain integration				
utomation				
Smaller lot sizes, mixed lots and single wafer factory operations				
Upgrade automation, APC and integration of new sensors and hybrid solutions				
Control of variability in manufacturing				
Advanced diagnostic and decision support systems (supervision, scheduling, agility, augmenting reactive with predictive, big data analytics)				
Real-time simulation support for optimize	d fab operations			
Knowledge management (inter fab flows,	fast diagnosis)			
FICS migration towards distributed archit	ecture BYOD/Apps			
Manufacturing data security consideratio	าร			
Manufacturing technology exploration for	functional integra tion of novel m	aterials (e.g. Graphene, TMD's, FerroElectric, e	.a.) Implemented in existing pilot	
ELD				
Advanced diagnostic systems (augmentin	g reactive with predictive, big data a	nalytics)		

Knowledge management (fast diagnosis)

- TRL 2-4 (Technology Readiness Level; applied research - validation in laboratory environment)

- TRL 4-6 (validation in laboratory ennvironment - demonstration in relevant environment)

- TRL 6-8 (demonstration in relevant environment - prototyping in an operational environment qualified)

3rd General Workshop- Sardinia June 14-15, 2018

WP6 - Markus Pfeffer

19

NEREIT

----- 2023 ---- 2026 ---- 2029 ---- 2033

Conclusion: Main recommandations (1/2)

- Concurrent WP's (WP2 WP5) were analyzing their domains in view of the presented applications and derive immediate and long-term requirements in terms of materials, processes and manufacturing needs.
- The feeling exists, that with the worldwide effort on materials, processes and manufacturing in the domain of More Moore, the imminent needs of European application domains is covered. However, more specific needs in the other NEREID domains were identified.
- In the WP6 roadmap activities were covered, where Europe is leading in terms of materials, processes and manufacturing, but where the demand from application side is stronger outside of Europe (e.g. EUV lithography equipment).

Conclusion: Main recommandations (2/2)

- Cover activities in WP6 where application wise Europe is leading, but where specific needs for materials, process and manufacturing require continued attention
- Synergies with ITRS/IRDS activities whenever possible, in particular for the section manufacturing science.

Acknowledgement

Co-Leader: Stefan De Gent

NEREID WP6 Technical Experts:

- Athanasios Dimoulas
- Olaf Kievit
- Robert Schreutelkamp
- Hessel Sprey
- Philippe Vialletelle
- SEA4KET Consortium
- All other NEREID WP leaders

