NanoElectronics Roadmap for Europe: Identification and Dissemination

Sardinia, June 14-15, 2018

WP2 Beyond CMOS

C. Sotomayor Torres, A. Ionescu and J. Ahopelto
Outline

• Introduction
• Methodology
• Beyond CMOS Technologies for the NEREID Roadmap
• Conclusions
• Recommendations
Objectives of WP2 ‘Beyond CMOS’

• To map the potential of Beyond CMOS devices for **data processing**.
• To perform case studies to identify potential designs and architectures for non-conventional approaches.
• To organise two **Domain workshops** to bring together experts and stakeholders for discussions and conclusions.
• To carry out a survey on the integration potential, power consumption, speed, etc. of the selected case-study devices.
• To provide input to the road map and a chapter on Beyond CMOS.
Introduction

Areas of the current EU portfolio on Alternative Computing.

<table>
<thead>
<tr>
<th>Category</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum computing</td>
<td>Technologies to build qubits and transport information between them, including algorithmic and architecture</td>
</tr>
<tr>
<td>Molecular electronics</td>
<td>Solid-state information processing functions built on organic molecules including biomolecules; molecular spintronics</td>
</tr>
<tr>
<td>Spintronics</td>
<td>Spin-based electronics and related materials</td>
</tr>
<tr>
<td>2D materials</td>
<td>Carbon-based and transition metal dichalcogenides, as well as electronic and spintronic functions based on these</td>
</tr>
<tr>
<td>Extended & beyond CMOS</td>
<td>Non mainstream semiconductor transistors, including III-V materials, steep-slope devices, single electron transistors, etc.</td>
</tr>
<tr>
<td>Neuromorphic computing</td>
<td>Hardware implementation of neural networks, analogue and digital, architectures and applications</td>
</tr>
</tbody>
</table>

(From the presentation of Mr Eric Fribourg-Blanc in the second Beyond CMOS Workshop in May 2017)
Methodology

Deliverables

D2.1 Report on Domain Workshop 1 with emphasis on new physical state variables (M7)
D2.2 Report on selection of case studies for Domain Workshop 2 (M15)
D2.3 Report on outcome of Domain Workshop 2 (M18)
D2.4 Input to the Roadmap in the form of a Chapter for Beyond CMOS (M33)
Speakers and topics:

H. Riel, IBM: The future of computing
M. Esposito, U Luxembourg: Information thermodynamics
M. Heyns, IMEC: III/V and deep subthreshold devices for next generation CMOS technologies
M. Graziano, Polytechnica di Torino: A quantitative approach to Beyond CMOS potentials analysis
J. Åkerman, KTH, U Gothenburg: Spintronics meets magnonics-towards spin wave based neuromorphic computing
S. Thorpe, CNRS: Neuromorphic computing with spikes
B. Li, U Colorado: Phononics: processing information & computing with phonons
L. Colombo, U Gagliari: Some issues on thermal transport in 2D materials: the paradigmatic case of graphene
M. Costache, ICN2: Topological insulators and magnon spintronics
S. Volz, CNRS: Heat transport at nanoscale
A. Martinez, UP Valencia: Nano-optomechanics: playing with light and sound at the nanoscale
R. Enrstorfer, Max Plank Fritz Haber Institute: Dynamics of electrons, spins and phonons in transition metal dichalcogenides
M. Calame, U Basel: Does molecular electronics compute?
2nd WP2 Domain Workshop; Alternative Computing Paradigms
11-12 May, 2017, Sitges

Speakers and topics:

J. Barreto, U Bristol: Integrated quantum photonics for computation
W. Pernice, U Münster: Nanophotonics circuits for unconventional computing
J. Thigna, U Luxembourg: Thermoelectrics of quantum NEMS systems
B. Dieny, SPINTEC: Spintronics for low power computing
M. Costache, ICN2: Computation approaches with magnonics
M. Duranton, CEA: NeuRAM3 project Neuromorphic computation
S. Vassanelli, U Padova: RAMP project Real neurons-nanoelectronics
Architecture with Memristive Plasticity
J. Åkerman, U. Gothenburg, KTH: Spin Hall nano-oscillator networks
for neuromorphic computing
M. Rubi, U Barcelona: Heat transfer in small scales
S. Cotofana, TU Delft: Design of Brownian circuits
S. de Franceschi, CEA: MOS-QUITO project CMOS-based qubits
A. Ionescu, EPFL: Steep slope devices
Beyond CMOS Technologies

Criteria:
- Potential for data processing
- Time scale ~10-15 years

- Tunnel FETs
- Neuromorphic computing
- Spintronics
- Quantum photonics
- Thermal computing
Tunnel FETs

Opportunities

Various categories of Steep Slope Switches. (Courtesy of Prof. Adrian Ionescu, EPFL).

- Operation based on band-to-band tunneling
- Sub-thermionic subthreshold slope, $S<60$ mV/dec at RT
- Supply voltage scaling \rightarrow 0.2-0.3 V
- Low power consumption
- Von Neumann architecture applies \rightarrow compatible with current circuit designs
- 2D/2D TFET architecture
- Analog gain at low I/V
Tunnel FETs

Challenges

- Low I_{ON} -> Low operation speed
- Materials and interfaces (traps degrade the operation)
- Scaling may be an issue
- Design tools for TFET circuitry are missing
Neuromorphic Computing

Opportunities

- Two approaches:
 - HPC + algorithms, pattern recognition, data mining
 - Specific hardware (digital, analog, mixed) with memory nodes
- Application specific operation
- Integration with CMOS platform, non-von Neumann architecture
- Low power, high efficiency (sub-fJ energy per bit possible)
- Supervised/unsupervised learning
- Fast pattern recognition (images, text, medical etc.)
- Photonic synapses (optical fibres + PCM synapses)
- Degrees of freedom: Weighting of input can be multilevel, parallel or serial
- AI and IoT
Neuromorphic Computing

Challenges

- Hardware development (CMOS neurons and PCM synapses, photonic synapses, spintronics, ...)
- Material issues, CMOS compatibility
- Non-von Neumann architectures, algorithms…
- Interfacing with current technology, protocols, programming…
- Understanding the information processing of biological entities

HPC Hardware solutions Bio interface

2018 2023 2028
Spintronics

Opportunities

- Established technology for memories, STT-MRAM market growing
- Spins can be extra degrees of freedom in information processing
- Spin waves/magnons: No Joule heating, potential for THz operation
- Logic circuits have been demonstrated (switches, XNOR, majority gates)
- Fewer components, smaller footprint, low power consumption
- Neural networks have been demonstrated
- Tens of GHz microwave oscillators based on spin torque and spin Hall effect
- Topological insulators have potential for robust interconnects
Spintronics

Challenges

- Materials, interface and processing issues challenging
- Spin injection and read-out in spin FETs
- Magnetic field required in some cases
- Quantum resistance (25.8 kΩ) of topological insulators (parallel channels?)

SEM image of a spin-valve device in which the charge and spin currents are separated (Courtesy of Dr. Marius Costache, ICN2).
Quantum Photonics

Opportunities

- Photons do not suffer from decoherence
- Silicon and III-V semiconductor technology platform exists
- 8-qubit processor demonstrated
- Secure data transfer (Quantum Key Distribution)
- Quantum Technology Flagship initiated in Europe
- Potential for photonic neuromorphics
Quantum Photonics

Challenges

- Single photon detectors (APD, superconducting wires)
- Data transmission speed (~Mbit/s)
- Attenuation in optical fibres limit transfer distance (~100s of km)
- Development of repeaters
- QKD networks

Identical spontaneous four-wave mixing (SFWM) photon sources for quantum photonics (Courtesy of Dr. Joshua W. Silverstone, University of Bristol).

QKD networks
Q simulators

QKD 5Mbit/s/100km

2018 2023 2028

QKD networks
Thermal Computing

Opportunities

- Addressing the issues in thermal management of nanoelectronics (the “heat death”, “dark silicon”)
- Potential for low power computing (~$k_B T$)
- There are several approaches:
 - Optomechanics
 - NEMS based computing
 - Heat computing
 - Brownian/entropy computing (power from the environment)
Thermal Computing

Challenges

• How to implement the current nanophononics understanding to thermal management of nanoelectronics circuit design/architectures and materials
• Large part of the experimental work is still at low temperatures
• Need to develop the device structures and algorithms to control the energy/information flow
• Experimental proof of concept of Brownian/entropy computing
Conclusions

- There are several potential Beyond CMOS technologies suitable for information processing.
- Many of these have also potential in sensor applications.
- Most of the technologies are still in academic laboratories.
- Europe is in good position to exploit the emerging technologies: Theoretical background is strong, experimental work at the highest level.
- The ties between academia and industry have to be strengthen to make the best out of the strong academic potential.
- There is a gap between the new ideas developed at universities and RTOs, and the European nanoelectronics industry, partially created by the division between the ERC (single PI, “science”) and “innovative” R&D (TRL mismatch, consortium-based).
General Recommendations

- Nanofabrication affects most of the emerging technologies impacting variability of critical dimensions and processing defects. Novel approaches are required for dimensional and compositional nanometrology, accompanied by a traceable measurement protocol and to-be-developed instrumentation.

- A critical issue for Europe with the majority of the Beyond CMOS and alternative computing concepts is the low uptake or interest shown by industry.

- One potential solution to enhance the interaction between academic and industrial actors towards improving communication, identification of gaps and priorities in emerging ICT technologies could be to add a significant bonus (funds or marks) to proposals which include TRL 2 to 3 research actions.

- The funding for TRL 1-2 level research should be doubled in LEIT ICT, given the large reduction of nanoelectronics TRL1-2 funding in FET.

- Look for alternative, more application-driven routes to capitalise the potential of Beyond CMOS ideas, structures and devices.
Feedback From the GW3 & Advisory Board

- To set up an ecosystem of universities and RTOs to identify the research priorities in TRL1-3 (foresight exercise) and find a way to discuss them with industry on regular basis (projects to establish a link with the SCC and meet more often?).

- To create instruments that support building an ecosystem of ICT-oriented projects which bridge the interests of academia and industry in Europe (a combination of MEL-ARI like project clusters of the ESPRIT program and the annual EFECS meetings?).

- To address the role of memories (the NEREID chapter complements the IRDS on Beyond CMOS which has extensive sections on memories and switches, a link between industry and academia?).
Acknowledgements

- Heike Riel
- Marc Heyns
- Livio Baldi
- Markus Pfeffer
- Eric Fribourg-Blanc
- All the speakers, discussants and rapporteurs in the Helsinki Workshop
- All the speakers, discussants and rapporteurs in the Barcelona Workshop