NanoElectronics Roadmap for Europe: Identification and Dissemination

3rd General Workshop
Sardinia, June 14-15, 2018

WP4/Sub Task. 4.2 Energy for autonomous systems

Gustavo Ardila – Grenoble Alpes University (IMEP-LaHC)
ardilarg@minatec.grenoble-inp.fr
Outline

1. Introduction

2. Selection of the technologies and experts

3. Concepts (technologies) covered in NEREID roadmap

4. Application examples

5. Conclusion: Main recommendations
Introduction

Selection of technologies and experts
1. Introduction

- Energy supply is essential (<mW, tens of µW) → Energy harvesting

![Diagram of Autonomous device]

Objective:

- Roadmap on energy harvesting technologies...
- Identify material and technological issues, challenges, applications...
2. Selection of Technologies and Experts (1/2)

- ST 4.2 was created after the 1st General Workshop (April 2016)
- Among the different EH technologies, 4 were selected for the initial roadmap:
 - Experts were selected coming from Industries and Universities:

- 4 technology experts:
 - **Stephane Monfray** – STMicroelectronics, Crolles, France
 Thermal energy harvesting ➔ Electrostatic energy conversion
 - **Anne Kaminski-Cachopo** – Grenoble INP, France
 Solar Energy Harvesting
 - **Aldo Romani** – University of Bologna, Italy
 Circuits for energy management
 - **Gustavo Ardila** – Grenoble Alpes University / Grenoble INP, France
 Mechanical energy harvesting (piezoelectric materials)

1st Domain workshop (Bertinoro, Italy, October 19th 2016)
- 40’ presentations + discussions

Mid-term roadmap
2. Selection of Technologies and Experts (2/2)

- Inclusion of other missing technologies in the Roadmap

- New technology experts:
 - **Alessandra Costanzo** – University of Bologna, Italy
 RF energy harvesting/wireless power transfer
 - **Dhiman Mallick/Saibal Roy** – Tyndall Institute, Ireland
 Electromagnetic energy harvesters
 - **James Rohan** – Tyndall Institute, Ireland
 Energy storage devices: microbatteries
 - **Androula Nassiopoulou** – IMEL/NCSR Demokritos, Greece
 Energy storage devices: micro capacitors

2nd Domain workshop (Barcelona, Spain, December 15th 2017)
- 40’ presentations + discussions

Final roadmap
Concepts (technologies) covered in NEREID roadmap
Concept #1: « Electrostatic conversion » (1/2)

• Principle
One electrode of the capacitor charged (electret, triboelectricity...) and the relative movement between the two electrodes causes a variation of electric capacity -> charges movement

1. Key research questions or issues
Improve efficiency, input bandwidth, reduce working frequency, increase reliability...

 ➢ Medium term: 5+: Fluorin polymers / surface texturation
 ➢ Long term: 10+ : Encapsulated SiO₂/triboelectric materials

2. Potential for application or Application needs and Impact for Europe
Autonomous sensors (IoT): Industrial / Infrastructures monitoring, transportation, wearable...

 ➢ Medium term: 5+ : Industrial machines/train, shoes
 ➢ Long term: 10+ : Cars, planes, medical patches

• Applications are linked to mechanical vibrations harvesting (movements)
 • Energy density is low at macro level but increases at micro scale (relative capacitor variation increases)
 • Power is proportional to the surface potential
 • Main challenge is related to the reliability of the material to keep the charges
 • CMOS compatibility
Concept #1: « Electrostatic conversion » (2/2)

3. Technology and design challenges

Develop low cost solutions, flexible approach, triboelectricity.

- **Medium term: 5+**: Optimized polymers
- **Long term: 10+**: Low cost polymers

4. Definition of FoMs (quantitative or qualitative) or planned evolution

<table>
<thead>
<tr>
<th>FoMs</th>
<th>2023</th>
<th>2026</th>
<th>2029</th>
<th>2033</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume power density (mW/cm³) @1G and 100Hz</td>
<td>0.5 mW/cm³</td>
<td>0.65</td>
<td>0.8</td>
<td>1 mW/cm³</td>
</tr>
<tr>
<td>Volume energy per cycle (µJ/cm³) @1G</td>
<td>5µJ/cm³ per cycle</td>
<td>6.5</td>
<td>8</td>
<td>10µJ/cm³ per cycle</td>
</tr>
</tbody>
</table>

5. Some recommendations

- Enlarge frequency bandwidth (>50Hz) around low frequency target (<100Hz)
- Reliability of materials is key (maintain charges over 10 years)
- Develop flexible/low cost approaches (wearables)
1. Key research questions or issues

Improve efficiency, performance of piezo, input bandwidth, reduce working frequency

- **Medium term: 5+**: Higher density seismic masses, packaging (vacuum), non-linearities...
- **Long term: 10+**: Small scale hybrid devices, nanocomposites (nanotechnology) ...

2. Potential for application or Application needs and Impact for Europe

Autonomous sensors (IoT): Industrial/Infrastructures monitoring, transportation, wearable...

- **Medium term: 5+**: Industrial machines/train, shoes
- **Long term: 10+**: Cars, planes, medical patches
3. Technology and design challenges

Bio-compatibility, Low temperature fabrication process (integration on flexible substrates)

- Medium term: 5+ : Piezo-electret, composites without lead
- Long term: 10+ : Nanocomposites (nanotechnology)

4. Definition of FoMs (quantitative or qualitative) or planned evolution

Surface/volume power density (µW/cm² or µW/cm³)

MEMS devices (research) (f < 300Hz, G<0.5)

<table>
<thead>
<tr>
<th>FoMs</th>
<th>2023</th>
<th>2026</th>
<th>2029</th>
<th>2033</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM1: Volume power density (mW/cm³)</td>
<td>1</td>
<td>1.15</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>FoM2: Surface power density (mW/cm²)</td>
<td>0.15</td>
<td>0.165</td>
<td>0.18</td>
<td>0.2</td>
</tr>
</tbody>
</table>

5. Some recommendations

- Consider new sustainable materials to avoid lead based piezoelectrics
- Develop micro/nano piezo-composites could be a key for performance improvement
Concept #3: « Electromagnetic transduction »

• Principle: Faraday’s Law
 Relative motion – magnetic field & coil (or change in the flux linkage) -> Electromotive force

- Applications are linked to mechanical vibrations harvesting (movements)
- Devices tuned at a specific vibration frequency
- Macro-devices are vastly developed and are on the market
- MEMS devices less explored due to drastic drop in performance

❖ 1. Key research questions or issues
Increase power density with miniaturization, high performance micro/nano magnets (MEMS)
 ➢ Medium term: 5+: Integration techniques (magnets, coils), thick polymer bonded powdered magnets
 ➢ Long term: 10+: rare-earth free, nano-composites, MEMS compatible coil fabrication

❖ 2. Potential for application or Application needs and Impact for Europe
Railroad monitoring, automotive sensors powering, IoT, human wearable devices...
 ➢ Medium term: 5+: SHM from industrial machines, train, cars, aircrafts...
 ➢ Long term: 10+: Monitoring automated process manufacturing, enabling smart sensing for automated transportation
Concept #3: «Electromagnetic transduction»

3. Technology and design challenges

Magnet coil interaction (most important factor -> EM coupling), CMOS compatible permanent magnets (MEMS applications)
- Medium term: 5+ : Optimized patterned magnets, avoid rare-earth magnets, multi-nano-layers
- Long term: 10+ : Suitable micro-coil topology (aligned magnet array), hard-nanostructured magnets

4. Definition of FoMs (quantitive or qualitative) or planned evolution

Surface/volume power density (mW/cm² or mW/cm³)

<table>
<thead>
<tr>
<th>Miniaturized devices (f < 100Hz, G<0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoMs</td>
</tr>
<tr>
<td>FoM1: Volume power density (mW/cm³)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FoM2: Surface power density (mW/cm²)</td>
</tr>
</tbody>
</table>

5. Some recommendations

- CMOS compatible integration technique for rare-earth free (e.g. NdFeB - neodymium).
- 3D coil integration/development having low resistive loss/enhanced turn numbers.
1. Key research questions or issues

Improve efficiency of thermal to electricity transformation, Develop “green” solutions (not based on Bi$_2$Te$_3$)...

- Medium term: 5+: Nanostructured materials / SiGe, TiSi nanodots based solutions
- Long term: 10+: Nanostructured materials / Si based solutions

2. Potential for application or Application needs and Impact for Europe

Autonomous sensors for security monitoring

- Medium term: 5+: Hot pipelines, electrical installations, Pipe leaks, electrical lines, Heating systems control, sensors in cars (exhaust), trains...
- Long term: 10+: Sensors in cars (motor), planes
3. Technology and design challenges

Develop new material for improved efficiency without Bi_2Te_3 near room temperature, Maintain the thermal gradient on thin devices / reduce size of heat sink

- Medium term: 5+: Nano structured materials / SiGe based solutions
- Long term: 10+: Phonon engineering / Si based solutions

4. Definition of FoMs (quantitive or qualitative) or planned evolution

ZT, output power vs available temperature difference (mW/K²/cm²)

<table>
<thead>
<tr>
<th>FoMs</th>
<th>2023</th>
<th>2026</th>
<th>2029</th>
<th>2033</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZT</td>
<td>>2.5</td>
<td>2.65</td>
<td>2.8</td>
<td>>3</td>
</tr>
<tr>
<td>Output power (mW/K²/cm²)</td>
<td>>0.15</td>
<td>0.165</td>
<td>0.18</td>
<td>>0.2 (+30%)</td>
</tr>
</tbody>
</table>

5. Some recommendations

- Consider new sustainable materials to avoid Bi_2Te_3.
- Develop new thermal energy approaches (non Seebeck): Phase change, thermomechanical...
1. Key research questions or issues

Improve indoor/outdoor solar cell efficiency with adapted materials, flexibility, low cost, stability

- **Medium term: 5+**: Organic, dye sensitized, perovskite, III-V compounds solar cells, tandem on Si solar cells
- **Long term: 10+**: Nanostructured solar cells, multi-junction solar cells, quantum dots...

2. Potential for application or Application needs and Impact for Europe

Autonomous systems: portable devices, IoT, ...

- **Medium term: 5+**: Sensors, IoT, portable electronic devices, home automation, security systems...
- **Long term: 10+**: IoT, health applications, factory automation...
3. Technology and design challenges

Use materials with adapted bandgap for performance improvement

Optimized solar cells structures and low cost technologies

- **Medium term: 5+**: Commercialized organic and inorganic solar cells (III-V compounds, DSSC...) with improved efficiency for outdoor/indoor
- **Long term: 10+**: Increased stability (when needed) and efficiency for indoor and outdoor.

4. Definition of FoMs (quantitative or qualitative) or planned evolution (Commercialized)

<table>
<thead>
<tr>
<th>FoMs</th>
<th>2023</th>
<th>2026</th>
<th>2029</th>
<th>2033</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power (W/cm²) and efficiency under standard output sunlight conditions (AM1.5G, 1kW/m², 25°C)</td>
<td>>23mW/cm² (eff. : 23%) c-Si cells</td>
<td>>23.6mW/cm² (eff. : 23.6%) c-Si cells</td>
<td>>24.2mW/cm² (eff. : 24.2%) c-Si cells</td>
<td>>25mW/cm² (eff. : 25%) c-Si cells</td>
</tr>
<tr>
<td>Output power (W/cm²) for indoor modern artificial light conditions (200lux, LED...)</td>
<td>>20µW/cm²</td>
<td>>21.5µW/cm²</td>
<td>>23µW/cm²</td>
<td>>25µW/cm² (+25%)</td>
</tr>
</tbody>
</table>

5. Some recommendations

- Define standard procedures for indoor photovoltaic cells characterization
- Design and optimize structures for outdoor or/and indoor light (sensitivity to light sources, flexibility if necessary, cost...)
Concept #6: «RF energy harvesting/wireless power transfer» (1/2)

2 Principles:
- Radiated far field RF source (High frequency 300MHz-GHz)
 -> Antennas (no interaction)
- Near EM field – Capacitive coupling (low frequency 30kHz-MHz)
 -> coils, electrodes (strong interaction)

1. Key research questions or issues

Rectifiers with high dynamic range, compact receiving antennas with non-conventional materials

- **Medium term**: 5+ Rectifying topologies (CMOS based), flexible antennas (wearables)
- **Long term**: 10+ Miniature integrated systems (Antenna + rectifier – CMOS tech.), implanted mini-antennas (medical)

2. Potential for application or Application needs and Impact for Europe

Wearables, implantable electronics, biomedical devices, logistics, tracking goods

- **Medium term**: 5+ Body sensors, wearable monitoring (physiological), pace-maker, smarter RFID
- **Long term**: 10+ Smart textile, implantable chips for monitoring (smart prosthesis)
3. Technology and design challenges

Integrated design (antenna/rectifier) -> large dynamic range, design of dedicated signals (enhanced power transfer)

- **Medium term: 5+** : Auto-adjusting solutions (sensing RF power & exploiting self bias mechanism of ultra low power transistor), dynamical variation of power transmission (proof of concept)
- **Long term: 10+** : High dynamic range rectennas, power shaping sources adjustable in real-time

4. Definition of FoMs (quantitative or qualitative) or planned evolution

<table>
<thead>
<tr>
<th>FoMs</th>
<th>2023</th>
<th>2026</th>
<th>2029</th>
<th>2033</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miniaturized Antenna radiation efficiency</td>
<td>> 50%</td>
<td>> 56%</td>
<td>> 62%</td>
<td>> 70%</td>
</tr>
<tr>
<td>Increase RF-to-DC conversion efficiency</td>
<td>> 20%</td>
<td>> 26%</td>
<td>> 32%</td>
<td>> 40%</td>
</tr>
<tr>
<td>(at low-power levels (1µW))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Some recommendations

- Optimize rectenna components (minimize losses, maximize power transfer)
- Design high efficient receiving antennas with miniaturization constraints (maximize received power)
1. Key research questions or issues

Improve capacity (reduced surface, volume), increase power capability (portable applications), increase performance of electrode/electrolyte

- **Medium term: 5+**: Multilayer structure, 3D structuring, higher conductivity materials
- **Long term: 10+**: New lithium based electrolyte, new materials, interface engineering

2. Potential for application or Application needs and Impact for Europe

Internal, external autonomous sensors, healthcare systems

- **Medium term: 5+**: Factory, environment, medical patches
- **Long term: 10+**: Home, agriculture, implantable

Concept #7: « Energy storage - Microbatteries » (1/2)

Principle:
- Electrolyte: high ion conductivity, low electronic conductivity
- Replacement of the classical liquid electrolyte -> thin film

- **Si integrated**
- **Lithium based thin films**: ~1 mWh/cm², capacity retention -> 1000 cycles
- **Electrode thickness limit**: < ~µm
- **Ionic conductivity of solid electrolyte**: << liquid based (commercial)
- **Size reduction, safer**

Diagram Details:
- Electrolyte: high ion conductivity, low electronic conductivity
- Replacement of the classical liquid electrolyte -> thin film
- Size reduction, safer
- 10 µm thickness
3. Technology and design challenges

Patterning active materials, low temperature integration, packaging

- **Medium term**: 5+ : Integration on silicon, reliability (packaging)
- **Long term**: 10+ : Integration on flexible, low cost (packaging)

4. Definition of FoMs (quantitative or qualitative) or planned evolution

<table>
<thead>
<tr>
<th>FoMs</th>
<th>2023</th>
<th>2026</th>
<th>2029</th>
<th>2033</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM1: Surface energy density</td>
<td>5</td>
<td>6.5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>(mWh/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FoM2: Surface power density</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>(mW/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FoM3: Cycle life</td>
<td>10,000</td>
<td>13,000</td>
<td>16,000</td>
<td>20,000</td>
</tr>
</tbody>
</table>

5. Some recommendations

- Multilayer materials processing -> increase capacity/unit footprint
- New materials: increase ionic (electrolyte) and electronic (electrodes) conductivity
1. Key research questions or issues

Improve capacity density, reduce leakage current, reduction of series resistance

- Medium term: 5+: 3D structuring + high-K, optimized dielectrics, thicker electrodes
- Long term: 10+: 3D structuring + new materials, higher conductivity materials

2. Potential for application or Application needs and Impact for Europe

Internal, external autonomous sensors, healthcare systems

- Medium term: 5+: Factory, environment, medical patches
- Long term: 10+: Home, agriculture, implantable

3 Parameters:
- Capacitance density (Energy stored)
- Leakage current (Operation voltage, energy stored, retention)
- Series resistance (Charging, discharging time thus power)

- Si integrated (integration compatibility)
- Robustness of operation (lack of electrolyte)
- Higher voltage operation (lower leakage current)
- Environmental, health friendly materials
- Disadvantage: lower capacitance density -> energy storage
Concept #8: «Energy storage - Microcapacitors» (2/2)

3. Technology and design challenges

3D structuring, uniform high-K deposition, integration with on-chip harvesters

- Medium term: 5+ : Nanotechnology, known high-K materials, design
- Long term: 10+ : Nanotechnology, new materials, implementation

4. Definition of FoMs (quantitative or qualitative) or planned evolution

<table>
<thead>
<tr>
<th>FoMs</th>
<th>2023</th>
<th>2026</th>
<th>2029</th>
<th>2033</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoM1: Capacitance density (μF/cm²)</td>
<td>10</td>
<td>22</td>
<td>34</td>
<td>50</td>
</tr>
<tr>
<td>FoM2: Series resistance (Ω)</td>
<td>1</td>
<td>0.73</td>
<td>0.46</td>
<td>0.1</td>
</tr>
<tr>
<td>FoM3: Vmax (V)</td>
<td>5</td>
<td>6.5</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

5. Some recommendations

- Research on uniform thin high-k dielectrics with reduced leakage currents
- 3D structures for high capacitance density
- New electrode materials for decrease series resistance
1. Key research questions or issues

Improve the minimum sustainable input power and voltage, reduce power consumption

- Medium term: 5+: Miniaturization of inductors, Inductor-less converters, MOSFETs with low Vth...
- Long term: 10+: Miniature systems, MEMS piezoelectric transformers, adaptive MPPT...

2. Potential for application or Application needs and Impact for Europe

Autonomous sensors..

- Medium term: 5+: Environmental monitoring & automation, healthcare
- Long term: 10+: Embedded nodes for implantable/wearables

Concept #9: « Micro-power management » (1/2)

- Essential to store and deliver the harvested energy to circuits
- Must consume less than the input power
- Efficiency must be traded with self-consumption
- Should keep sources in the MPP

(src: A. Romani et al., IEEE Computer 2017)
3. Technology and design challenges

Design of energy-aware circuits with reduced leakage & active currents, Development of dedicated microelectronic processes (options/devices)

- **Medium term: 5+**: Energy-aware design (power converters)< 100nA, MOSFETS with low Vth
- **Long term: 10+**: Energy-aware design (all system parts), more efficient power switches (reduced control voltage, low leakage)

4. Definition of FoMs (quantitative or qualitative) or planned evolution

<table>
<thead>
<tr>
<th>FoMs</th>
<th>2023</th>
<th>2026</th>
<th>2029</th>
<th>2033</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum input voltage and power for cold-start-up</td>
<td>< 100 mV, < 1 µW</td>
<td>< 73 mV, < 730 nW</td>
<td>< 46 mV, < 460 nW</td>
<td>< 10 mV, < 100 nW</td>
</tr>
<tr>
<td>Minimum Conversion efficiency</td>
<td>70%</td>
<td>73%</td>
<td>76%</td>
<td>80%</td>
</tr>
</tbody>
</table>

5. Some recommendations

- Define trade-offs (intrinsic power consumption, efficiency, performance): energy-aware power design of circuits.
- Size reduction of inductors, planar alternatives (piezoMEMS), quality of switches
Application examples
Application examples:

Application 1: Transports (automotive, railroad)

<table>
<thead>
<tr>
<th>Example of use-case</th>
<th>Technology</th>
<th>Ambient Conditions</th>
<th>FoM 2023 +5 ans</th>
<th>FoM 2026</th>
<th>FoM 2029</th>
<th>FoM 2033 +10 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor on freight wagon</td>
<td>Outdoor solar (commercial devices c-Si cells)</td>
<td>AM 1.5G (1000W/m²)</td>
<td>>23mW/cm²</td>
<td>>23.6mW/cm²</td>
<td>>24.2mW/cm²</td>
<td>>25mW/cm²</td>
</tr>
<tr>
<td>Sensor near car engine</td>
<td>Thermal Harvesting /small heatsink (~mm thick)</td>
<td>Hot source=125°C Cold 60°C</td>
<td>>0.25mW/cm²</td>
<td>>0.28mW/cm²</td>
<td>>0.31mW/cm²</td>
<td>>0.35mW/cm²</td>
</tr>
<tr>
<td>Sensor near car engine</td>
<td>Thermal Harvesting / large heatsink (~cm thick)</td>
<td>Hot source=125°C Cold 60°C</td>
<td>>25mW/cm²</td>
<td>>27.4mW/cm²</td>
<td>>29.8mW/cm²</td>
<td>>33mW/cm²</td>
</tr>
<tr>
<td>Sensor on truck trailer</td>
<td>Piezoelectricity with mechanical harvesting (Commercial)</td>
<td>Freq=200Hz Acc=1G</td>
<td>>0.1mW/cm²</td>
<td>>0.115mW/cm²</td>
<td>>0.13mW/cm²</td>
<td>>0.15mW/cm²</td>
</tr>
<tr>
<td></td>
<td>Miniaturized electromagnetic harvesters</td>
<td></td>
<td>>0.3mW/cm²</td>
<td>>0.36mW/cm²</td>
<td>>0.42mW/cm²</td>
<td>>0.5mW/cm²</td>
</tr>
</tbody>
</table>

- Power management circuits: 40-80% (<10µW), 90% (~100µW)
Application examples:

- **Application 2: IoT for domotic applications**

<table>
<thead>
<tr>
<th>Example of use-case</th>
<th>Technology</th>
<th>Ambient Conditions</th>
<th>FoM 2023 +5 ans</th>
<th>FoM 2026</th>
<th>FoM 2029</th>
<th>FoM 2033 +10 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless sensors to control heaters, lights, occupancy...</td>
<td>Indoor Solar</td>
<td>150lux (bedroom)</td>
<td>>15µW/cm²</td>
<td>>15.9µW/cm²</td>
<td>>16.8µW/cm²</td>
<td>>18µW/cm²</td>
</tr>
<tr>
<td></td>
<td>Indoor Solar</td>
<td>300lux (living room)</td>
<td>>30µW/cm²</td>
<td>>32.1µW/cm²</td>
<td>>34.2µW/cm²</td>
<td>>37µW/cm²</td>
</tr>
<tr>
<td>Sensors for Heat control & Heat Meters</td>
<td>Indoor Thermal Harvesting on Heaters / large heatsink</td>
<td>Hot source=45°C Cold 20°C</td>
<td>>3.8mW/cm²</td>
<td>>4.16mW/cm²</td>
<td>>4.52mW/cm²</td>
<td>>5mW/cm²</td>
</tr>
<tr>
<td></td>
<td>Indoor Thermal Harvesting on Heaters / small heatsink</td>
<td>Hot source=45°C Cold 20°C</td>
<td>>37µW/cm²</td>
<td>>40.9µW/cm²</td>
<td>>44.8µW/cm²</td>
<td>>50µW/cm²</td>
</tr>
</tbody>
</table>

- Power management circuits: 40-80% (<10µW), 90% (~100µW)
Conclusions: Main recommendations
Conclusion: Main recommendations (1/2)

- Projects should mainly focus on the development and optimization of a complete application as a whole (from harvesting to the use case).
- The improvement of the EH performance/efficiency is as important as the development of “green” materials. Replacing toxic/rare materials used nowadays (lead based piezoelectrics, Bi$_2$Te$_3$ for thermoelectrics, NdFeB - neodymium, for electromagnetic conversion).
- The use of nanotechnologies is foreseen to increase the performance of all the concepts in general.
- Flexible and low cost approaches for wearable applications should be developed as well.
Increasing the bandwidth at low frequency target (below 100Hz) will help to fit applications for vibration mechanical EH.

Indoor PV: Define standard procedures for indoor PV cells characterization

Exploit the mm-wave band (30 GHz – 300 GHz) for intentional Far-field RF Wireless Power Transfer (WPT) for enhancing rectenna miniaturization and focusing of the energy transfer.

Energy storage is required as a hybrid device with the EH options to alleviate any transient effects and assist with higher power operation: nanotechnologies, high-K, new materials, 3D structuring...

Power Management: size reduction of inductors, planar alternative to inductors, reduce leakages and allow low input powers.

Thank you for your attention!