

NanoElectronics Roadmap for Europe: Identification and Dissemination

Athens, April 6/7, 2017

WP6 - Markus Pfeffer (Fraunhofer IISB)

- Nereid WP6
 - Equipment and materials
 - Manufacturing Science
- Review of parallel road mapping initiatives
- NEREID WP6 Roadmap
- Lessons learned from Domain workshops
- Summary and Conclusions

- Nereid WP6
 - Equipment and materials
 - Manufacturing Science
- Review of parallel road mapping initiatives
- ❖ NEREID WP6 Roadmap
- Lessons learned from Domain workshops
- Summary and Conclusions

Nereid WP6

Task 6.1 Equipment and Materials (imec)

- ❖ Processing tools and high quality materials have been the key enabling factors in the evolution of Nanoelectronics. One of the major successes of ITRS has been the capability to insure the timely availability of equipment and materials for the next technology node, by insuring to manufacturers the long term visibility needed to allocate the R&D investments to guarantee the continuation of the Moore's Law.
- The objective of this task is to extend this benefit to the increased complexity and variety of technologies developed not only for 'More than Moore' but also for nanoscale FET and Beyond CMOS, covered in this European roadmap
- A close cooperation will be established between device and process developers, on one side, and equipment and materials supplier on the other side.

Nereid WP6

Task 6.2 Manufacturing Science (Fraunhofer)

- The scaling down of the MOS transistor has driven the progress in the ICs performance and the cost per function of the devices has dropped accordingly.
- For complex devices, the decrease of the cost per functions is achieved by the development of derivative options on top of the core processes and the integration of heterogeneous processes. This leads to increasingly complex line management driven by many process generations, multiple products with short life cycle and high variability in terms of demand.
- The roadmap aims to activate a converging network of experience and competency involving the academic community for the development of new tools and methods for **fab productivity** needed to **increase efficiency** in the fab by managing **cycle time**, **advancing equipment and process control and yield enhancement** by providing a reference schedule.

- Nereid WP6
 - Equipment and materials
 - Manufacturing Science
- Review of parallel road mapping initiatives
- ❖ NEREID WP6 Roadmap
- Lessons learned from Domain workshops
- Summary and Conclusions

Review of parallel road mapping initiatives - ITRS

ITRS 2.0

INTERNATIONAL
TECHNOLOGY ROADMAP
FOR
SEMICONDUCTORS 2.0

2015 EDITION

FACTORY INTEGRATION

THE ITRS IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS PERTAINING TO INDIVIDUAL PRODUCTS OR EQUIPMENT.

THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2.0: 2015

TIPS:

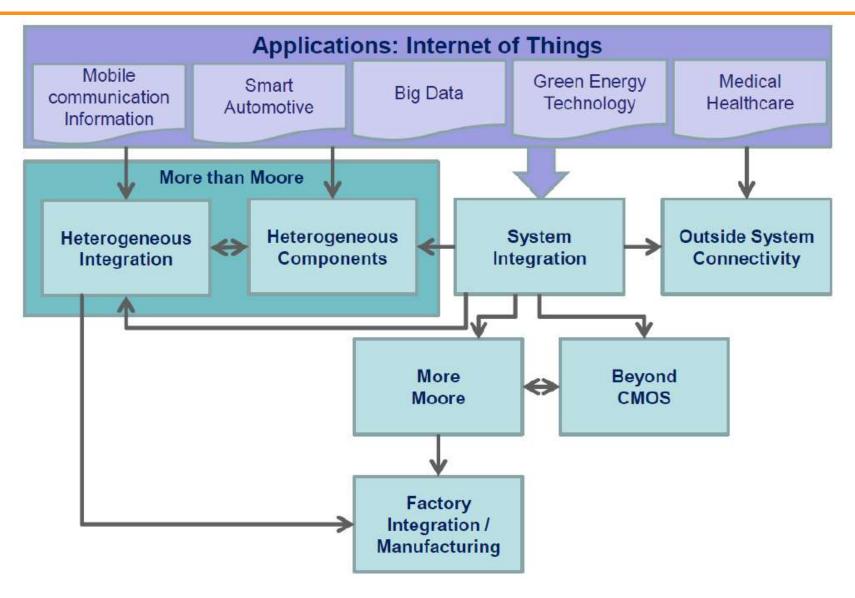
INTERNATIONAL
TECHNOLOGY ROADMAP
FOR
SEMICONDUCTORS 2.0

2015 EDITION

YIELD ENHANCEMENT

THE ITRS IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS PERTAINING TO INDIVIDUAL PRODUCTS OR EQUIPMENT.

THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2.0: 2015


WP6 - Athens, April 7, 2017

Review of parallel road mapping initiatives - ITRS

7	Factory Operations	17	11.6	Industry Collaboration for Facilities	39
7.1	FO Challenges		11.7	450mm Considerations	40
7.2	Potential Solutions	21	12	Augmenting Reactive with Predictive	43
8	Production Equipment		12.1	Scope	
8.1	Scope		12.2	Prediction Vision	
8.2	Data Visibility (Into and Out of the Equipment)		12.3	Technology Requirements	45
0.2	Waste Reduction		13	Big Data	
0.5			13.1	Introduction	
8.4	Productivity Requirements		13.2	Scope	
8.5	Energy Savings and Factory Environment		13.3	Technology Requirements	
8.6	Data Integration in Production Equipment		13.4	General Big Data Areas of Concern	
8.7	Prediction Capabilities in Production Equipment	27	14	Control Systems Architectures	53
8.8	Potential Solutions	28	14.1	Scope	
9	Material Handling Systems	30	14.2	Control Systems Vision	
9.1	Overall		14.3	Control Systems Granularity	
9.2	450mm		14.4	Control Systems Speed and Quality	
40			14.5	Control Systems Capabilities	54
10	Factory Information and Control Systems		14.6	Future Control Paradigms	
10.1	Scope		14.7	Technology Requirements and Potential Solutions	
10.2	Improve Factory Effectiveness		15	Environmental Safety and Health	55
10.3	Improve Factory Yield and Minimize Waste		15.1	Scope	
10.4	Data Utilization	33	15.2	Alternative Assessment Methodologies	
10.5	Highly Reliable, High Performance Systems	33	16	Yield Enhancement (YE)	
11	Facilities	35	16.1	Scope	
11.1	Scope and Facility Mission		16.2	Airborne Molecular Contamination	
11.2	Demand on Facilities Services Increases		16.3	Ultra-Pure Water	
11.3	Complexity and Costs of Facilities Services Rising		16.4	Electrical Characterization Methods and Virtual Metrology for Yield Control	
0.100			16.5	The Move Towards Yield Prediction	
11.4	Semiconductor Industry Future Changes and Requirements		16.6	Wafer Defect Metrology	
11.5	Resource Conservation Considerations	38	16.7	Yield Management for Packaging and Assembly	59

Review of parallel road mapping initiatives - IRDS

- Nereid WP6
 - Equipment and materials
 - Manufacturing Science
- Review of parallel road mapping initiatives
- NEREID WP6 Roadmap
- Lessons learned from Domain workshops
- Summary and Conclusions

Concepts/Technologies	Medium term: 5+	Long term: 10+
i) Concept 1: More Moore		
a) Key research questions or issues		
nanoscale FET CMOS		
- Si based technology	X	
- Si(Ge) to Ge	X	X
- III/V		X
Interconnects		
- Advanced low-k to airgap	X	
- Cu based (including liner / barrier)	X	
-Beyond Cu metallization		X

Concepts/Technologies	Medium term: 5+	Long term: 10+
i) Concept 1: More Moore		
a) Key research questions or issues		
emerging devices beyond CMOS		
- Tunneling FET (conventional materials)	X	
- tunneling FET (2D materials)		X
- from charge based to spin based		X
computing paradigms		
- Quantum computing		X
- Neuromorphic		X

Concepts/Technologies	Medium term: 5+	Long term: 10+
i) Concept 1: More Moore		
b) Potential for application or Application needs and Impact for		
Europe		
The feeling exist that with the worldwide effort on materials,		
processes and manufacturing in the domain of More Moore, the	X	v
imminent needs of European application domains is covered – but in		Λ
certain domains (e.g. litho) Europe is playing leading role)		

Concepts/Technologies	Medium term: 5+	Long term: 10+
i) Concept 1: More Moore		
c) Technology and design challenges> Material and Process	X	X
Technology Challenges	Λ	Λ
Advanced Surface Passivation / defect passivation (new materials,		
scaled technologies)		
Material / thin film growth		
- Conventional semiconductor technologies	X	
- 2D materials		X
- Spin based materials / stacking		X
Patterning		
- Area Selective Deposition	X	
- Area Selective Etching	X	
- EUVL	X	
- DSA based litho	X	

Concepts/Technologies	Medium term: 5+	Long term: 10+
i) Concept 1: More Moore		
d) Definition of FoMs (quantative or qualitative) or planned evolution (based on SoA @ 2017 and evolution vs time)		
e) Other issues and challenges, and interaction with other Tasks/WPs.		

→ Lessons learned from Domain workshops

NEREID WP6 Roadmap - The current work

Concepts/Technologies	Medium term: 5+	Long term: 10+
ii) Concept 2: More than Moore		
a) Key research questions or issues		
Sensors		
Energy		
b) Potential for application or Application needs and Impact for		
Europe		
c) Technology and design challenges> Material and Process		
Technology Challenges		
d) Definition of FoMs (quantative or qualitative) or planned		
evolution (based on SoA @ 2017 and evolution vs time)		
e) Other issues and challenges, and interaction with other		
Tasks/WPs.		

- Nereid WP6
 - Equipment and materials
 - Manufacturing Science
- Review of parallel road mapping initiatives
- ❖ NEREID WP6 Roadmap
- Lessons learned from Domain workshops
- Summary and Conclusions

Lessons learned from Domain workshops (1/2)

After consultation with technical experts of WP6, we came to the following intermediate conclusions:

- Concurrent WP's should analyze their domain in view of the presented applications and derive immediate and long term requirements in terms of materials, processes and manufacturing needs. WP's should provide a SWOT analysis of their domain in view of needs / opportunities for materials, processes and manufacturing to serve their application domains.
- The feeling exist that with the worldwide effort on materials, processes and manufacturing in the domain of More Moore, the imminent needs of European application domains is covered. However, more specific needs in the other NEREID domains need to be identified.

Lessons learned from Domain workshops (2/2)

WP6 presented a first summary table of materials and processes. Important is to rank / evaluate the content in view of 'impact for Europe', as well as current 'position for applications' in Europe.

- Cover activities in WP6 roadmap where Europe is leading in terms of materials, processes and manufacturing, but where the demand from application side is stronger outside of Europe (e.g. EUV litho)
- Cover activities in WP6 where application wise Europe is leading, but where specific needs for materials, process and manufacturing require continued attention (e.g. OLED)

- Nereid WP6
 - Equipment and materials
 - Manufacturing Science
- Review of parallel road mapping initiatives
- ❖ NEREID WP6 Roadmap
- Lessons learned from Domain workshops
- Summary and Conclusions

Summary and Conclusions

Based on the aforementioned learnings, WP6 can proceed as WP 6 is not an autonomous work package.

- The application specific requirements for materials, processes and manufacturing are best covered within the roadmap of the WP's
- The WP6 roadmap should / will concentrate on the domains not covered – but relevant for Europe

