# **LUDDEC** OUTLOOK FOR 200mm E-MODE DEVICE TECHNOLOGY S. STOFFELS

PUBLIC

# OUTLINE

- High level roadmap for 200mm GaN POWER platform
- 200mm GaN-on-Si: Performance & Reliability Optimization

2

- Schottky Diodes
- p-GaN HEMTS
- Exploration of Novel Concepts
  - Substrates
  - Co-Integration
  - Next generation devices



#### ່ເຫາຍເ

#### GaN AT IMEC 10+ YEAR OF GAN EXPERIENCE

#### • Two dedicated teams:

- GaN epi engineering
- GaN device engineers
- Proven state of the art epi- capabilities up to 8-inch GaN-on-Si
  - Imec has access to 3 different reactors from 2 vendors:
    - Veeco K465i
    - Veeco Propel
    - Aixtron G5+ C

Imec proprietary recipes have been successfully installed in all these reactors.

#### 8-inch CMOS compatible GaN power device platform:

- State of the art of GaN-on-Si epitaxy, e-mode ( $V_{TH}$ >2V) and diode technology
- Exploring and de-risking new technologies
- Tech transfer and/or tailored e-mode transistor (or Schottky diodes) development
- Fully equipped for:
  - I 00, I 50 and 200mm GaN epitaxy and 200mm pilot line processing
  - Metrology systems
  - High-Voltage-Current characterization
  - Reliability setups



#### ່ເກາec

•

# ECOSYSTEM IN THE GAN PROGRAM



#### <sup>•</sup>ເກາຍເ

#### HIGH LEVEL PLAN OF GAN TECHNOLOGY AT IMEC TARGETING SHORT AND LONG TERMS NEEDS OF GAN



່ເຫາຍເ

# ADDRESSING SHORT TERMS AND LONG TERMS TOPICS



່ເຫາec

# ADDRESSING SHORT TERMS AND LONG TERMS TOPICS



7

ເກາec

# **EPITAXY**

# WHY IS GROWING GaN ON Si SUBSTRATE SO DIFFICULT? BECAUSE OF THE LARGE LATTICE AND THERMAL MISMATCH

9

- The Si lattice is 17% larger than the GaN lattice
- CTE mismatch between GaN and Si is • 116%

Lattice mismatch



Large thermal mismatch can result in GaN layer cracking







#### lunec





# DEVICETECHNOLOGY

# GaN DEVICE TECHNOLOGY



The AlGaN layer is recessed below the gate, to locally interrupt the 2DEG to realize emode operation. A p-GaN layer below the gate liftup the band diagram below the gate to realize e-mode operation. Schottky Diode with edge termination to achieve low leakage under reverse

#### imec has a 200mm platform for processing various GaN power technologies

#### ເກາec

# SCHOTTKY DIODES

# DIODE ARCHITECTURE GATED EDGE TERMINATION (GET) SCHOTTKY BARRIER DIODE (SBD)

- GET-SBD is the architecture of choice \*
  - Recessed Schottky Contact in center (with length L<sub>SC</sub>) allows forward current flow
  - Recessed Gated areas at the side (with length L<sub>G</sub>) block reverse leakage current



#### **GET-SBD**



#### **Conventional SBD**



\* US 2014/0103357 AI, EP 2722890 AI and JP 2014 090 059 (published)

14

#### umec

# DIODE PERFORMANCE CRITERIA: DC OPERATION TARGET VALUES ARE SET ON IFORW AND IREV OF 30 mm POWER DIODES

15

- Forward Voltage V<sub>F</sub>
  - $V_F = V_{AC}$  at  $I_{AC} = 0.1$  A/mm
  - Characterizes forward current capability
  - 200V target at 25°C: I.7V
  - 200V target at 150°C: 2.0V
- Reverse Current I<sub>rev</sub>
  - $I_{rev} = I_{AC} \text{ at } V_{AC} = -200 \text{ V}$
  - Characterizes current blocking capability
  - 200V target at 25°C: Ie-7 A/mm
  - 200V target at 150°C: le-6 A/mm



#### ່ເກາec

# DIODE PERFORMANCE: 650V LARGE AREA POWER DIODES



16

- High breakdown achieved for large Area Schottky Diodes
  - >650V
- Tight distribution on both forward and reverse Characteristics.

ເກາຍເ

#### DIODE PERFORMANCE RELIABILITY

- Result standardized HTRB test (at 150°C and V<sub>AC</sub> = 160 V)
  - Target  $t_{BD} \ge 10$  ks can be achieved by optimizing the gate dielectric in the gate edge termination region 15.02

17



- High temperature reverse bias stress showed improvement of the device stability for optimized GET dielectric.
  - I0mm devices
  - LAC = 5μm
  - VAC = -160V
  - 150°C

#### ່ເຫາຍເ



18

**ໍ**ເກາຍເ

# E-MODE DEVICE TECHNOLOGY

# RECESSED MIS-HEMT EXCELLENT SURFACE, ROBUST TDDB AND CHALLENGING GATE TECHNOLOGY



#### Advantages:

- I. AlGaN surface untouched  $\rightarrow$  low surface trapping
- 2. Robust gate dielectric for TDDB

#### **Challenges:**

- I. Gate dielectric for low hysteresis /PBTI
- 2. Limited knobs to turn  $V_{TH}$ :
  - Recess technology
  - ✓ Dielectric charges and cleaning
  - × Ni/Au metal stack is not allowed in CMOS
  - ✗ Fluorine implantation: unstable



#### umec

# E-MODE OPERATION OBTAINED WITH RECESSED MISHEMT



# P-GaN HEMT



- Many knobs to turn, excellent V<sub>th</sub>, important to control the surface
- Advantages:
  - I.Threshold voltage can be tuned by:
    - p-GaN layer (Mg profile, epi-deposition, etc...)
    - AlGaN barrier design
  - 2. Absence of hysteresis (PBTI)
  - 3. Low dispersion if properly designed
- Disadvantages
  - Larger forward current



#### ່ເກາec

# 36 mm POWER TRANSISTOR DATA SHEET





# **P-GAN DEVICE RELIABILITY**



**HTRB** 

- High temperature reverse bias (V<sub>gs</sub>= 0V, V<sub>ds</sub>=160 V, 10 ksec at 150 °C)
  - 3 wafers from 3 different device lots

#### ່ເກາec

#### HTGB



- High temperature gate bias (V<sub>GS</sub>=7V, V<sub>d</sub>=0V, 10 ksec at 150 °C)
  - Slight shift in V<sub>t</sub>

24

# ADDRESSING SHORT TERMS AND LONG TERMS TOPICS



່ເຫາຍເ

# NEXT GENERATION SUBSTRATES

200mm GaN-on-Si is great!



....but can we do better? 



Large thermal mismatch can result in damage to Si substrate as measured by X-Ray Topography

Buffer Thickness (µm)

οJ

6

25C

lmec

# NEXT GENERATION SUBSTRATES

#### • Are alternatives possible?

- Exploration and development of <u>Novel</u> <u>Concepts for Substrates</u> for 200mm GaN power Devices that provide better (Al)GaN crystal quality, lower wafer bow, or reduced buffer leakage at high voltage and methods for cointegration of power devices.
  - Improved Si substrates
  - Si with interlayers
  - CTE matched substrates



27

#### ່ເກາec









# LOOKING BEYOND SI CTE MATCHED SUBSTRATES



 poly-AIN: much better thermally matched compared to Si and similar to SiC

ເກາec

Poly-AIN is in spec for wafer bow and leakage for a much thinner substrate compared to GaN-on-Si



30

200mm GaN-on-Poly AIN: low wafer bow and low leakage for a substrate of 0.725mm versus 1.15 for GaN-on-Si



# SEMI-VERTICAL DEVICES

# **NOVEL DEVICES 200mm** SEMI-VERTICAL DEVICES

#### **Vertical Devices**

#### **Semi-vertical devices**

- High voltage over drift region
  - No impact on foot print
  - No surface electric fields
  - No high voltage over the back-end
  - Potential to achieve avalanche rating
- Conceptually different from HEMT':

lmec

- No 2DEG  $\rightarrow$  no high electron mobility
- On-state through inversion layer formation
- Requires N+, N- and P+ doped epi layers

- 200mm Bulk GaN is not available or prohibitively expensive
- 200mm Semi-Vertical Device Technology at imec
  - Preparation of modules and device understanding
  - Might not have commercial finality, rather path towards full vertical devices
  - Fully Planar technology
  - Explore the limits of current epitaxial technology for vertical device stacks
  - "n+1" substrates for semi-vertical devices







Epitaxy & Process integration



#### PROCESS DEVELOPMENT TIMELINE PATH TOWARDS 200mm SEMI-VERTICAL DEVICES



່ເກາec

# NOVEL DEVICES EPITAXY FOR SEMI-VERTICAL DEVICES



- Continuously pushing the boundary of epitaxial growth of semi-vertical device stacks
  - Current drift layer thickness I µm with I.5-2µm achievable thickness

່ເກາec

# **CO-INTEGRATION**

# NOVEL CONCEPTS HIGHER LEVEL OF INTEGRATION: COST REDUCTION ON THE SYSTEM LEVEL

#### Higher level of integration

- Integration of high side and low side switches
  - Further cost reduction of the GaN technology
  - Reduction of interconnect parasitics (enable higher switching speed)







#### Junction isolation

- Isolate devices from each other by fabricating p-well/nwell in the substrate.
  - Reference GaN transistor source to p-well or n-well
  - Parasitic pn-diode interfering with switching behavior

#### Trench isolation

- Isolate devices from each other by fabricating trenches in the substrate
  - Good isolation can be achieved



# CONCLUSIONS

# CONCLUSIONS

- 200mm GaN epitaxy and e-mode device technology established
  - Solved the issue of growing thick epi-layers on 200mm, qualified for 650V.
  - State of the art performance for 200V and 650V devices
  - Increasing reliability yield and performance of components (increase TRL level)
- Looking ahead to the future
  - Technology exploration for next generation substrates and epitaxy
    - Increase breakdown strength of GaN-on-Si
      - Thinner buffer with equivalent breakdown, decreasing cost and increasing yield

38

- Novel substrates to enable next-gen applications
- Next generation devices
  - (semi-)vertical devices
  - Higher levels of integration through isolation techniques

#### ເຫາຍເ

# embracing a better life