
GaN from an epitaxy perspective

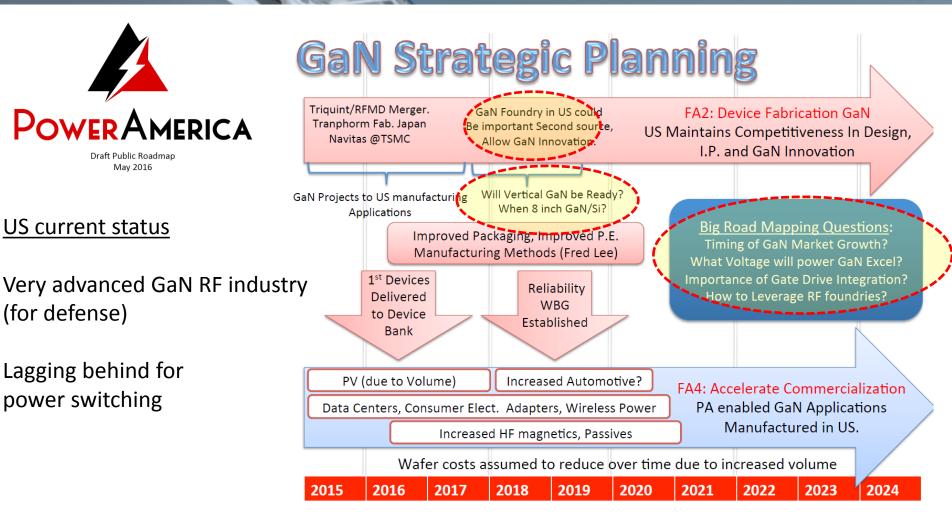
Joff Derluyn - EpiGaN

We supply industry-leading GaN-on-Si and GaN-on-SiC epiwafers to the semiconductor industry enabling the next generation of power switching and RF power devices and systems.

Product Highlights:

- **Power Switching:** leakage < 10 nA/mm@650V, breakdown > 1000 V, record R_{on}^*A of 1.6 m Ω cm²
- **RF Power:** $f_t = 100 \text{ GHz} (I_g \text{ of } 60 \text{ nm}), g_m > 600 \text{ mS/mm}, P_{CW} > 4.5 \text{ W/mm}@40 \text{ GHz}$
- Sensor applications enabled by bulk resistivity > 10¹² Ohm/sq

EpiGaN proprietary 2015


Topics - NEREID workshop

Thoughts on **GaN material** from different angles:

- Application requirements
 - RF, power, (chemical sensing, MEMS, opto)
- Substrate specific challenges
 - (Al₂O₃,) Si (SOI), SiC, GaN bulk, AlN bulk
- MOCVD reactor technology
 - design choices, cleaning, throughput, mono/multi, metrology
- Epitaxial technologies
 - Quality improvement (defects, structures, ...)
 - Selective regrowth
- Business models

Power America public roadmap

GaN Material Advantages per Application

Power Switching

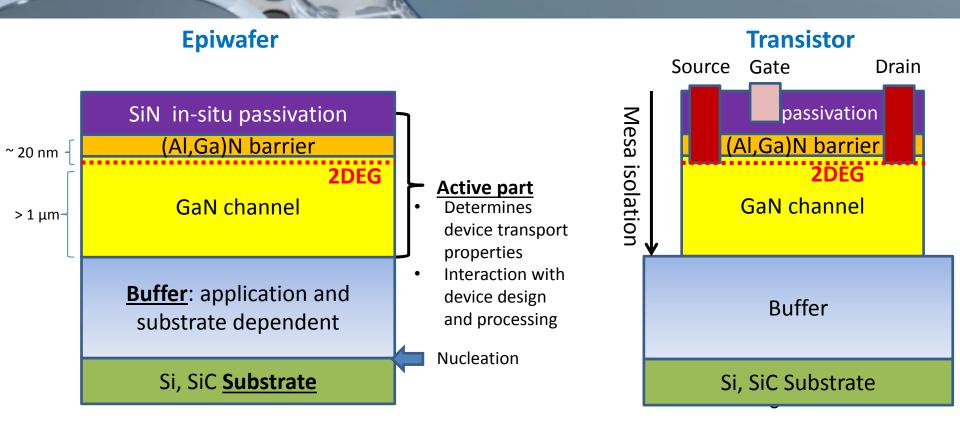
- R_{on}: up to 3 Orders oM improvement over Si
- No reverse recovery charge
- Very high dV/dt (~ 100V/ns)
- Frequency operation >> 100kHz => smaller & lighter systems
- High temperature capability

SiC Breakdown voltage Electron saturation velocity GaAs-HEMT Electron mobility Lectron mobility Lectron mobility Lectron mobility Lectron mobility

RF Power

- Excellent PA linearity, PAE
 - and **P_{out}** per gate periphery
- High L_{gate}/d_{barrier} aspect ratio to reduce short channel effects
- Two flavours:
 - High-end GaN on SiC
 - *Low-cost* GaN on Si

Sensors, MEMs, ...


- Higher sensitivity
- Chemical inertness
- Temperature stability
- On-chip integration of multiple functions

Courtesy of Yole Development

5

Epiwafer stacks versus HEMT device

GaN material on the market today

One of the main questions is the choice of the substrate:

	RF	Power	Sensing	laser/LED
GaN-on-Si	2" to 200mm	2" to 200mm	R&D	R&D
GaN-on-SiC	2" to 6"	too high cost?		2" to 6"
GaN-on-sapphire	prev. gen.		R&D	2" to 200mm
GaN-on-GaN				2"

The choice of the substrate is determined by

- Cost
- Performance level (e.g. for defence/space)
- History

Power switching - Application requirements

Power switching with GaN on Si

- Status:

- Quality commercial sources exist on 6"
- reaching 1μ A/mm² at ~ 800V, no current collapse

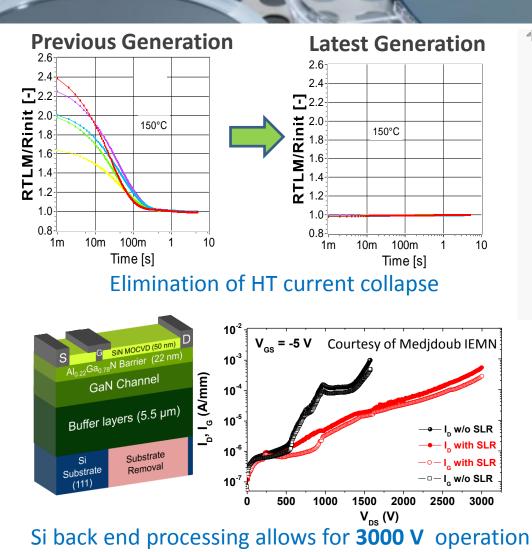
Vertical leakage and breakdown

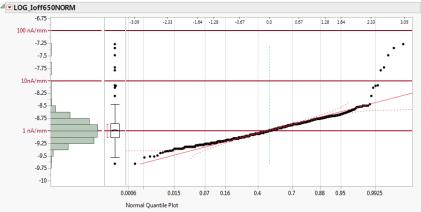
- Thickness scaling: now ~ 4.5 μ m for 600V -> xxx μ m for 1200V and beyond?
- Symmetric IV behaviour for both polarities (enables integrated H-bridge)
- Choice of buffer types (proprietary?): SL, graded, IL, C-doped, ...

Trapping effects in the buffer

- Causes current collapse
- Fundamentals: point defects e.g. C, V_{Ga}
- Mitigation by proprietary designs: e.g. impurity profiling
- Growing understanding through modelling (e.g. U Bologna / U Padova)

Power switching - Application requirements


• Power switching with GaN on Si


- Semi standard substrates? Thickness may be an issue

- Tensile cooldown stress proportional to layer thickness
- Matching compressive stress built up during buffer growth
- => Risk of plastic deformation at growth temperature
- => Wafer breakage
- Conduction loss reduction
 - HEMT heterostructure engineering InAIN/AIN/...
- Cost road-map -> reactor design
 - Throughput, yield, diameter scaling
- Enhancement mode by p-(Al)GaN: doping levels, diffusion profiles
- Integration options with Si CMOS (cf. TI, Dialog), e.g. for gate driver


Power switching – performance data

 Quantiles

 Summary Statistics
 Mean
 8,965309
 Std Dev
 0,2277651
 Std Err Mean
 0,0074092
 Upper 95% Mean
 8,970768
 Lower 95% Mean
 9,989849
 N
 945

Uniform low leakage current across 6"

EpiGaN proprietary 2014

Current status of GaN-on-Si

Threats/weaknesses:

- The buffer stack is critical
 - Causes limitations for breakdown, current collapse, RF loss
- High density of threading dislocations & point defects
 - Critical threshold values to achieve reliable devices have not been identified
 - Mechanisms not fully understood
- Drive towards thicker epilayers for power
- Cost roadmap

Strengths/Opportunities:

- Main (proven?) choice for power, increasing interest for RF
- Scaling diameter is on-going (now at 200mm)
- Si fab compatibility
 - substrate thickness and contamination
- Easy back-side processing
 - E.g. TSV, local substrate removal, replacing Si by diamond
- Novel integration options, e.g. through SOI, 3D stacking, ...
 - Gate drivers, RF digital front end and RF filters, ...

Current status of GaN-on-SiC

Threats/weaknesses

- Reliable roadmap for cost ?
- Diameter scaling to/beyond 6"?
- Some issues with processing:
 - Usually in dedicated III-V fabs on 3" or 4"
 - TS(iC)V, wafer thinning

Opportunities/strengths

- The established technology for RF (DC-100GHz)
 - For high end space/military, also for commercial applications (e.g. Sumitomo: JPN base stations).
 - Mature technology: MMIC-level
 - Little interest from power switching

12

• Established value chain (epi / foundry / system)

Topics for epitaxy development

- Quality improvement for enhanced reliability
 - Reduction of TD density
 - Nucleation, buffer designs
 - Understanding of fundamental behaviour
 - structural & crystal investigations
 - Modelling
- Higher voltage: thicker / better buffers
 - 600V -> 900V -> 1200V
- Low Rsheet heterostructures
 - E.g. InAlN ~ 220 Ohm/sq
- Selective regrowth
 - n-GaN for ohmic contacts
 - p-GaN for e-mode gates, vertical transistors
 - For combined GaN/CMOS
 - Requires integration in device process flow

Cost: Directions in Reactor technology

- MOCVD or MBE or HVPE or ...
 - MOCVD for the mainstream
 - MBE for regrowth?
- Reactor design (=> yield)
 - Gas injection
 - Heating strategy
 - Internal geometry (multiwafer / single wafer)
 - Wafer handling
- Reactor cleanliness
 - Essential to achieve yield of GaN on Si
- Throughput
 - Cycle time: growth rate, cleaning process
 - Multiwafer versus single wafer tools
 - Automation for wafer handling & process control
- Metrology
 - In feedback loop for automated process control
- Target: < 500\$ / 6"

YIELD & THROUGHPUT

Topics for the roadmap

- Diameter upscaling
 - to 200mm; even 300mm?
- Higher voltage capability for GaN-on-Si with lower R_{sh}
- Cost road-map
 - for SiC substrates
 - for GaN epitaxy
- Clarify the impact of crystal quality on reliability
- RF: GaN-on-X is the technology of choice for 5G
 - Metric: PAEfficiency at 30GHz
- Co-integration with Si CMOS
- Novel substrate materials

