

BCD Smart Power Roadmap Trends and Challenges

Giuseppe Croce

NEREID WORKSHOP 'Smart Energy'

Bertinoro, October 20th

Major Trends in Smart Power ASICs

- Power Devices evolution
- Enhanced Programmability (ePCM)
- High Voltage applications
- Challenges & Conclusions

Major Trends in Smart Power ASICs

- Power Devices evolution
- Enhanced Programmability (ePCM)
- High Voltage applications
- Challenges & Conclusions

What is BCD?

A concept introduced by ST in the mid-80s [1][2][3] widely used today in the industry

[1] Single Chip Carries Three technologies, Electronics Week, December 10, 1984

[2] C. Cini, C. Contiero, C. Diazzi, P. Galbiati, D. Rossi, "A New Bipolar, CMOS, DMOS Mixed Technology for Intelligent Power Applications", ESSDERC '85 Proceedings, Aachen (Germany), September 1985

[3] A. Andreini, C. Contiero, P. Galbiati, "A New Integrated Silicon Gate Technology Combining Bipolar Linear, CMOS Logic and DMOS Power Parts", IEEE Transactions on Electron Devices, Vol. ED-33 No.12, December 1986

Analog + Digital + Power & HV on one chip 5

High Voltage & Power section (DMOS) to drive external loads

Analog blocks to interface the external world to the digital systems

Digital core (CMOS) for signal processing

ST BCD Roadmap Strategy

Process customization by application & Differentiation Introduction of innovative modules and materials

Performance Improvement & Area Saving : Power Evolution New power architectures to maintain best-in-class performances Leverage Power Discrete experience

Performance Improvement & Area Saving Lithography Nodes Evolution
Area reduction trend from lithography and increased
wafer size thanks to ST's experience in Advanced CMOS

System Miniaturization & Area Saving: Assembly & Packaging Secure optimized finishing solution compatible with state of the Art assembly/Packaging technology

Major Trends in Smart Power ASICs

- Power Devices evolution
- Enhanced Programmability (ePCM)
- High Voltage applications
- Challenges & Conclusions

Trends in modern Smart Power ASICs

Thick Cu Metallization schemes

for High Current, High Power, Robust Bonding over Active Areas

Roadmap Evolution : Full Copper BEOL

Thin Damascene-Cu + Thick Cu-RDL

AI BEOL Cu BEOL Increase of Energy Capability Robustness in Repetitive Power Pulsing working condition (ex.: Automotive ABS, Injector Valve driver ICs) where:

- High temperature gradients are generated inside power components
- The associated thermo-mechanical stress produces plastic deformation of metal layers and risk of loss of integrity of dielectrics

10

Major Trends in Smart Power ASICs

- Power Devices evolution
- Enhanced Programmability (ePCM)
- High Voltage applications
- Challenges & Conclusions

Power Device Performance vs Lithography

POWER DEVICES AREA scaling down depends more and more on DEVICE ARCHITECTURE than on Lithography Feature Reduction

Relative Gain to Ron X Area Improvement

ST Confidential

12

Evolution of Integrated Power Device Architecture

Enhanced Programmability: embedded Phase Change Memory(PCM) value

- Microcontroller integration on Advanced Power ASIC (Motor Controller, Digital Power Managemnt, Wireless Chargers, Automotive Body) requiring 'cheap' NVM solution
- Novel Memory cell has been developed based on Phase Change Memory (PCM) materials

ePCM (Phase Change Memory) in 110nm/90 nm BCD Platforms for SOC applications

Fully integrated Motor Driver

Differentiation in Advanced BCD Technologynot only Power & Litho.....

HV on SOI (200V to 300V) on 0.16um BCD Platforms

HV (600V to 1200V) Gate Drivers on 0.32um BCD Platforms

Galvanic Isolation (4KV to 6KV) on 0.32um – 0.16um BCD Platforms

Major Trends in Smart Power ASICs

• An insight on (some) differentiating enablers

- Power Devices evolution
- Enhanced Programmability (ePCM)
- High Voltage applications

Challenges & Conclusions

Next BCD development Challenges

Lithography Scaling

- VLSI materials compatibility
- 300mm fabs availability
- Process complexity

Power: R_{on} X Q_G

- New architectures ?
- New Materials ?
- SOA tailoring? Aging models?

Future System Needs

High Efficiency High switching f Galvanic Isolation Wide and different voltage rating COST, COST COST!

System Partitioning

- SiP: cost or performance?
- Thermal management
- Logic or Power intensive?

Differentiation

- New Memory
- High Performance Passives
- 'Very' High Voltage applications

Conclusions 18

- Smart Power BCD Technology is 'slowly' evolving towards Advanced CMOS Platforms
- Process customization and differentiation are key to boost technology platform competitiveness
 - New Specific Modules (Cu RDL and DTI) in volume production
 - New Power device architecture as cost redution enabler and to meet high efficiency/ high frequency Power management
 - New features availability to enable new function integration

