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CMOS integration victory: camera
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Hard disk Magnetic tape

CMOS-based solid-
state drive (SSD)
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Widdershoven’s 3 laws of 0T

1) Only non-trivial data need be transmitted

2) Autonomous devices need sensors to generate non-trivial data

(3) What can be sensed by CMOS will be sensed by CMOS

Examples:

Voltage, current, power, temperature, RF spectrum, ambient light, magnetic field, images,
radar, information, uniqueness (Physically Unclonable Functions), ...

- and this trend continues!
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Extend the CMOS integration victory to biosensing?

Maybe, but only if we stay close to “standard” CMOS

It's the result of a multi-B$ world-wide aligned development effort, so don’t mess
it up!

Exploit its strengths:

Small feature sizes

High speed & low power

Embedded signal conditioning, A/D conversion, programmability,...
Low-cost and high-yield volume production
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Biological length scales

:ﬂ CMOS technology nodes in production (October 2016)
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IgG antibody compared to 14-nm finFET

TEM cross-section through 2 fins (Intel)
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“Capacitive” sense electrode

Cross-section: Equivalent circuit:

Electrolyte

Captured target

Ap: Debye length (~0.8 nm at 150 mM salt concentration)

9. October 21, 2016 COMPANY PUBLIC



Disturbs

Electrolyte  Configurations of probes
and captured targets

Non-specific binding
and molecular charge
- — SAM defects
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Sensitivity scaling
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- Sensitivity is proportional to the square of the local electric field strength!
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Model system: semi-spherical metal nanoelectrode
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Frequency ranges
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Semi-spherical nano electrode (r, = 85 nm)
and 150 mM salt concentration:
f1 = 3.3 MHz, f, = 360 MHz
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Bulk sensitivity

Surface sensitivity

A (< 3.3 MH2)

Low (“blocking” double layer)

High (saturated at low-frequency level)

B (3.3 — 360 MHz)

Nominal (“transparent” double layer)

High (still exceeding bulk sensitivity)

C (> 360 MH2)

Nominal (“vanished” double layer)

Nominal (same as bulk sensitivity)
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Validation by numerical simulations

Touching SAM surface Inside double layer
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Figure 4: Absolute value of the change in capacitance due to the ssPNA-ssDNA or dsDNA hybridization et
enel at different heights of the molecule from the SAM. The sharp cusps at intermediate frequencies are caused by sign changes.

SAM: 2.5 nm thick; PNA/DNA: 13.2 nm long (40-bp)

Federico Pittino, Federico Passerini, Luca Selmi, Frans Widdershoven, Microelectronics Journal 45 (12), December 2014
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Issues

Probe molecules
Typically much larger than 4, (e.g. largely extending above double layer)

Should not stick directly to SAM surface (to avoid denaturing and to keep capturing sites accessible for
target molecules)

Other molecules
May stick directly to SAM surface (non-specific binding)

Issue

At frequencies below f, the sensitivity for non-target molecules and/or SAM surface damage is much
higher than for target molecules

Solution

- Use modulation frequencies 2 f, (or at least as high as possible)*

* You won't find this experimentally by searching for the frequency that gives the highest response
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NXP’s CMOS Pixelated Capacmve sensor chip
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Intrinsic SNR of single sensor cell

Cumulative reset noise 2 switch transistors: g,% = 2NkgT(C + Cp)

... and no 1/f noise (at least in principle)

Intrinsic signal/noise ratio (SNR):
(AQ)?  N(Vy —Vp)2(AC)?

SNRO —

09>  2kgT(C + Cp)
Reason for using Reason for using
nanoelectrodes advanced CMOS
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Cross-section (90-nm CMOS)

moisture barrier, nano-electrode
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NXP’ sCMOS Pixelated Capacitive sensor chip (2)

Current process: Au-rich AuCu
nanoelectrodes, made “the CMOS way”
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Chip features:

1) 256x256 (= 65,536) nanoelectrodes
2) 4 temperature sensors

3) 8 A/D converters

4) 256 digital data accumulators

Spring pins

/
\

Fluid ports

Modified CSP test socket Thermal interface via backside
(Aries Electronics part number A1924-314-23) of chip (not shown) }
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Reconfigurable counter electrode
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electrode
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Reconfigurable counter electrode
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Reconfigurable counter electrode
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Reconfigurable counter electrode
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Lower cut-off frequency (region A = B)

Figure 4.3: Spatial maps of the measured capacitance change (ACgxp) induced by the
sedimentation of insulating 4.4-um-radius particles at a salt concentration of 150 mM for
frequencies of 1.6 MHz, 7.1MHz and 50MHz. Each pixel represents a nanoelectrode and
each map was normalized to the maximum value of | ACexp | over all the three pictures. The
sensitivity to the presence of microparticles increases with increasing frequency.
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Quantitative agreement with simulations

csem= 22+03pm|o, =2.5+0.2 pm GE;m= 25+0.3 pm

exp

Measured

Simulated

Figure 4.4: (a) Response to a single particle at salt concentrations of 1 mM, 10 mM and 100
mM and a frequency of 50MHz. The rectangular shape corresponds to the asymmetry in the
pitch of the array. Apparent particle size o is independent of ionic strength over two orders of
magnitude. (b) Theoretical predictions (AC;; ) for the same conditions as in (a).
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Detection of particle conduction type

Conducting

Insulating
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Figure 4.6: (a) Response of the array to a mixture of dielectric and conducting 2.5-ym-radius
spheres. The signals have opposite polarities, demonstrating the ability to discriminate
between two types of particle at high frequencies. (b) Zoomed-out view of (a), comprising
30% of the nanoelectrode array surface. (¢) Comparison of experimental (left) and theoretical
(right) capacitance maps of a conducting particle at 50 MHz and 100 mM s=alt.
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Detection of nanoparticle binding

* Nanoparticles captured by BSA layer on chip surface
* Independent verification with AFM
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Detection of ... virus (one of the smallest viruses)
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Collecting statistics of captured nanoparticles
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Counting of particles and imaging of living cells

1-um dielectric particles in water (pH = 3) MCF7 breast tumor cells in growth medium
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Imaging of droplets in water-based emulsions
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Adding smartness: automatic particle tracking

32. October 21, 2016 COMPANY PUBLIC



The future: surfing Moore’s Law?

40-nm CMOS design exercise

« 3times cell area shrink

* Resolution comparable to
that of optical microscopes

And what about 14-nm CMOQOS?

33. October 21, 2016 COMPANY PUBLIC

| ™|



Thanks to my great collaborators!
Udine University (1)

Luca Selmi, Federico Pittino, Federico Passerini, Pierpaolo Palestri, Andrea Bandiziol,
Paolo Scarbolo, Andrea Cossettini

University of Twente (NL)

Serge Lemay, Cecilia Laborde, Christophe Renault, Vincent de Boer, Regine van der Hee,
Jeroen Cornelissen

Wageningen University & Research (NL)

Maarten Jongsma, Harrie Verhoeven

34. October 21, 2016 COMPANY PUBLIC

-
2 |



SECURE CONNECTIONS
FOR A SMARTER WORLD



